Leveraging Demonstrations for Deep Reinforcement Learning on Robotics Problems with Sparse Rewards

Oct 08, 2018
Mel Vecerik, Todd Hester, Jonathan Scholz, Fumin Wang, Olivier Pietquin, Bilal Piot, Nicolas Heess, Thomas Rothörl, Thomas Lampe, Martin Riedmiller


  Access Model/Code and Paper
A Practical Approach to Insertion with Variable Socket Position Using Deep Reinforcement Learning

Oct 08, 2018
Mel Vecerik, Oleg Sushkov, David Barker, Thomas Rothörl, Todd Hester, Jon Scholz


  Access Model/Code and Paper
Sim-to-Real Robot Learning from Pixels with Progressive Nets

May 22, 2018
Andrei A. Rusu, Mel Vecerik, Thomas Rothörl, Nicolas Heess, Razvan Pascanu, Raia Hadsell


  Access Model/Code and Paper
Learning Awareness Models

Apr 17, 2018
Brandon Amos, Laurent Dinh, Serkan Cabi, Thomas Rothörl, Sergio Gómez Colmenarejo, Alistair Muldal, Tom Erez, Yuval Tassa, Nando de Freitas, Misha Denil

* Accepted to ICLR 2018 

  Access Model/Code and Paper