The proof of the pudding is in the eating - that is why 6G testbeds are essential in the progress towards the next generation of wireless networks. Theoretical research towards 6G wireless networks is proposing advanced technologies to serve new applications and drastically improve the energy performance of the network. Testbeds are indispensable to validate these new technologies under more realistic conditions. This paper clarifies the requirements for 6G radio testbeds, reveals trends, and introduces approaches towards their development.
Training a generative model with limited number of samples is a challenging task. Current methods primarily rely on few-shot model adaption to train the network. However, in scenarios where data is extremely limited (less than 10), the generative network tends to overfit and suffers from content degradation. To address these problems, we propose a novel phasic content fusing few-shot diffusion model with directional distribution consistency loss, which targets different learning objectives at distinct training stages of the diffusion model. Specifically, we design a phasic training strategy with phasic content fusion to help our model learn content and style information when t is large, and learn local details of target domain when t is small, leading to an improvement in the capture of content, style and local details. Furthermore, we introduce a novel directional distribution consistency loss that ensures the consistency between the generated and source distributions more efficiently and stably than the prior methods, preventing our model from overfitting. Finally, we propose a cross-domain structure guidance strategy that enhances structure consistency during domain adaptation. Theoretical analysis, qualitative and quantitative experiments demonstrate the superiority of our approach in few-shot generative model adaption tasks compared to state-of-the-art methods. The source code is available at: https://github.com/sjtuplayer/few-shot-diffusion.
Face analysis tasks have a wide range of applications, but the universal facial representation has only been explored in a few works. In this paper, we explore high-performance pre-training methods to boost the face analysis tasks such as face alignment and face parsing. We propose a self-supervised pre-training framework, called \textbf{\it Mask Contrastive Face (MCF)}, with mask image modeling and a contrastive strategy specially adjusted for face domain tasks. To improve the facial representation quality, we use feature map of a pre-trained visual backbone as a supervision item and use a partially pre-trained decoder for mask image modeling. To handle the face identity during the pre-training stage, we further use random masks to build contrastive learning pairs. We conduct the pre-training on the LAION-FACE-cropped dataset, a variants of LAION-FACE 20M, which contains more than 20 million face images from Internet websites. For efficiency pre-training, we explore our framework pre-training performance on a small part of LAION-FACE-cropped and verify the superiority with different pre-training settings. Our model pre-trained with the full pre-training dataset outperforms the state-of-the-art methods on multiple downstream tasks. Our model achieves 0.932 NME$_{diag}$ for AFLW-19 face alignment and 93.96 F1 score for LaPa face parsing. Code is available at https://github.com/nomewang/MCF.
Stroke-based rendering aims to recreate an image with a set of strokes. Most existing methods render complex images using an uniform-block-dividing strategy, which leads to boundary inconsistency artifacts. To solve the problem, we propose Compositional Neural Painter, a novel stroke-based rendering framework which dynamically predicts the next painting region based on the current canvas, instead of dividing the image plane uniformly into painting regions. We start from an empty canvas and divide the painting process into several steps. At each step, a compositor network trained with a phasic RL strategy first predicts the next painting region, then a painter network trained with a WGAN discriminator predicts stroke parameters, and a stroke renderer paints the strokes onto the painting region of the current canvas. Moreover, we extend our method to stroke-based style transfer with a novel differentiable distance transform loss, which helps preserve the structure of the input image during stroke-based stylization. Extensive experiments show our model outperforms the existing models in both stroke-based neural painting and stroke-based stylization. Code is available at https://github.com/sjtuplayer/Compositional_Neural_Painter
This paper investigates indoor localization methods using radio, vision, and audio sensors, respectively, in the same environment. The evaluation is based on state-of-the-art algorithms and uses a real-life dataset. More specifically, we evaluate a machine learning algorithm for radio-based localization with massive MIMO technology, an ORB-SLAM3 algorithm for vision-based localization with an RGB-D camera, and an SFS2 algorithm for audio-based localization with microphone arrays. Aspects including localization accuracy, reliability, calibration requirements, and potential system complexity are discussed to analyze the advantages and limitations of using different sensors for indoor localization tasks. The results can serve as a guideline and basis for further development of robust and high-precision multi-sensory localization systems, e.g., through sensor fusion and context and environment-aware adaptation.
Based on the signals received across its antennas, a multi-antenna base station (BS) can apply the classic multiple signal classification (MUSIC) algorithm for estimating the angle of arrivals (AOAs) of its incident signals. This method can be leveraged to localize the users if their line-of-sight (LOS) paths to the BS are available. In this paper, we consider a more challenging AOA estimation setup in the intelligent reflecting surface (IRS) assisted integrated sensing and communication (ISAC) system, where LOS paths do not exist between the BS and the users, while the users' signals can be transmitted to the BS merely via their LOS paths to the IRS as well as the LOS path from the IRS to the BS. Specifically, we treat the IRS as the anchor and are interested in estimating the AOAs of the incident signals from the users to the IRS. Note that we have to achieve the above goal based on the signals received by the BS, because the passive IRS cannot process its received signals. However, the signals received across different antennas of the BS only contain AOA information of its incident signals via the LOS path from the IRS to the BS. To tackle this challenge arising from the spatial-domain received signals, we propose an innovative approach to create temporal-domain multi-dimension received signals for estimating the AOAs of the paths from the users to the IRS. Specifically, via a proper design of the user message pattern and the IRS reflecting pattern, we manage to show that our designed temporal-domain multi-dimension signals can be surprisingly expressed as a function of the virtual steering vectors of the IRS towards the users. This amazing result implies that the classic MUSIC algorithm can be applied to our designed temporal-domain multi-dimension signals for accurately estimating the AOAs of the signals from the users to the IRS.
For intelligent reflecting surface (IRS) aided downlink communication in frequency division duplex (FDD) systems, the overhead for the base station (BS) to acquire channel state information (CSI) is extremely high under the conventional ``estimate-then-quantize'' scheme, where the users first estimate and then feed back their channels to the BS. Recently, [1] revealed a strong correlation in different users' cascaded channels stemming from their common BS-IRS channel component, and leveraged such a correlation to significantly reduce the pilot transmission overhead in IRS-aided uplink communication. In this paper, we aim to exploit the above channel property for reducing the overhead of both pilot transmission and feedback transmission in IRS-aided downlink communication. Different from the uplink counterpart where the BS possesses the pilot signals containing the CSI of all the users, in downlink communication, the distributed users merely receive the pilot signals containing their own CSI and cannot leverage the correlation in different users' channels revealed in [1]. To tackle this challenge, this paper proposes a novel ``quantize-then-estimate'' protocol in FDD IRS-aided downlink communication. Specifically, the users first quantize their received pilot signals, instead of the channels estimated from the pilot signals, and then transmit the quantization bits to the BS. After de-quantizing the pilot signals received by all the users, the BS estimates all the cascaded channels by leveraging the correlation embedded in them, similar to the uplink scenario. Furthermore, we manage to show both analytically and numerically the great overhead reduction in terms of pilot transmission and feedback transmission arising from our proposed ``quantize-then-estimate'' protocol.
This paper investigates the performance tradeoff for a multi-antenna integrated sensing and communication (ISAC) system with simultaneous information multicasting and multi-target sensing, in which a multi-antenna base station (BS) sends the common information messages to a set of single-antenna communication users (CUs) and estimates the parameters of multiple sensing targets based on the echo signals concurrently. We consider two target sensing scenarios without and with prior target knowledge at the BS, in which the BS is interested in estimating the complete multi-target response matrix and the target reflection coefficients/angles, respectively. First, we consider the capacity-achieving transmission and characterize the fundamental tradeoff between the achievable rate and the multi-target estimation Cram\'er-Rao bound (CRB) accordingly.
This paper considers the quality-of-service (QoS)-based joint beamforming and compression design problem in the downlink cooperative cellular network, where multiple relay-like base stations (BSs), connected to the central processor via rate-limited fronthaul links, cooperatively transmit messages to the users. The problem of interest is formulated as the minimization of the total transmit power of the BSs, subject to all users' signal-to-interference-plus-noise ratio (SINR) constraints and all BSs' fronthaul rate constraints. In this paper, we first show that there is no duality gap between the considered joint optimization problem and its Lagrangian dual by showing the tightness of its semidefinite relaxation (SDR). Then, we propose an efficient algorithm based on the above duality result for solving the considered problem. The proposed algorithm judiciously exploits the special structure of an enhanced Karush-Kuhn-Tucker (KKT) conditions of the considered problem and finds the solution that satisfies the enhanced KKT conditions via two fixed point iterations. Two key features of the proposed algorithm are: (1) it is able to detect whether the considered problem is feasible or not and find its globally optimal solution when it is feasible; (2) it is highly efficient because both of the fixed point iterations in the proposed algorithm are linearly convergent and evaluating the functions in the fixed point iterations are computationally cheap. Numerical results show the global optimality and efficiency of the proposed algorithm.
In speech enhancement, the lack of clear structural characteristics in the target speech phase requires the use of conservative and cumbersome network frameworks. It seems difficult to achieve competitive performance using direct methods and simple network architectures. However, we propose the MFNet, a direct and simple network that can not only map speech but also map reverse noise. This network is constructed by stacking global local former blocks (GLFBs), which combine the advantages of Mobileblock for global processing and Metaformer architecture for local interaction. Our experimental results demonstrate that our network using mapping method outperforms masking methods, and direct mapping of reverse noise is the optimal solution in strong noise environments. In a horizontal comparison on the 2020 Deep Noise Suppression (DNS) challenge test set without reverberation, to the best of our knowledge, MFNet is the current state-of-the-art (SOTA) mapping model.