Abstract:Inference-time steering aims to alter the response characteristics of large language models (LLMs) without modifying their underlying parameters. A critical step in this process is the identification of internal modules within LLMs that are associated with the target behavior. However, current approaches to module selection often depend on superficial cues or ad-hoc heuristics, which can result in suboptimal or unintended outcomes. In this work, we propose a principled causal-attribution framework for identifying behavior-relevant attention heads in transformers. For each head, we train a vector-quantized autoencoder (VQ-AE) on its attention activations, partitioning the latent space into behavior-relevant and behavior-irrelevant subspaces, each quantized with a shared learnable codebook. We assess the behavioral relevance of each head by quantifying the separability of VQ-AE encodings for behavior-aligned versus behavior-violating responses using a binary classification metric. This yields a behavioral relevance score that reflects each head discriminative capacity with respect to the target behavior, guiding both selection and importance weighting. Experiments on seven LLMs from two model families and five behavioral steering datasets demonstrate that our method enables more accurate inference-time interventions, achieving superior performance on the truthfulness-steering task. Furthermore, the heads selected by our approach exhibit strong zero-shot generalization in cross-domain truthfulness-steering scenarios.
Abstract:Timely prediction of students at high risk of dropout is critical for early intervention and improving educational outcomes. However, in offline educational settings, poor data quality, limited scale, and high heterogeneity often hinder the application of advanced machine learning models. Furthermore, while educational theories provide valuable insights into dropout phenomena, the lack of quantifiable metrics for key indicators limits their use in data-driven modeling. Through data analysis and a review of educational literature, we identified abrupt changes in student behavior as key early signals of dropout risk. To address this, we propose the Dual-Modal Multiscale Sliding Window (DMSW) Model, which integrates academic performance and behavioral data to dynamically capture behavior patterns using minimal data. The DMSW model improves prediction accuracy by 15% compared to traditional methods, enabling educators to identify high-risk students earlier, provide timely support, and foster a more inclusive learning environment. Our analysis highlights key behavior patterns, offering practical insights for preventive strategies and tailored support. These findings bridge the gap between theory and practice in dropout prediction, giving educators an innovative tool to enhance student retention and outcomes.
Abstract:Large Language Models (LLMs) have demonstrated impressive performance on complex reasoning benchmarks such as GSM8K, MATH, and AIME. However, the substantial computational demands of these tasks pose significant challenges for real-world deployment. Model quantization has emerged as a promising approach to reduce memory footprint and inference latency by representing weights and activations with lower bit-widths. In this work, we conduct a comprehensive study of mainstream quantization methods(e.g., AWQ, GPTQ, SmoothQuant) on the most popular open-sourced models (e.g., Qwen2.5, LLaMA3 series), and reveal that quantization can degrade mathematical reasoning accuracy by up to 69.81%. To better understand this degradation, we develop an automated assignment and judgment pipeline that qualitatively categorizes failures into four error types and quantitatively identifies the most impacted reasoning capabilities. Building on these findings, we employ an automated data-curation pipeline to construct a compact "Silver Bullet" datasets. Training a quantized model on as few as 332 carefully selected examples for just 3-5 minutes on a single GPU is enough to restore its reasoning accuracy to match that of the full-precision baseline.
Abstract:Regular updates are essential for maintaining up-to-date knowledge in large language models (LLMs). Consequently, various model editing methods have been developed to update specific knowledge within LLMs. However, training-based approaches often struggle to effectively incorporate new knowledge while preserving unrelated general knowledge. To address this challenge, we propose a novel framework called Geometric Knowledge Editing (GeoEdit). GeoEdit utilizes the geometric relationships of parameter updates from fine-tuning to differentiate between neurons associated with new knowledge updates and those related to general knowledge perturbations. By employing a direction-aware knowledge identification method, we avoid updating neurons with directions approximately orthogonal to existing knowledge, thus preserving the model's generalization ability. For the remaining neurons, we integrate both old and new knowledge for aligned directions and apply a "forget-then-learn" editing strategy for opposite directions. Additionally, we introduce an importance-guided task vector fusion technique that filters out redundant information and provides adaptive neuron-level weighting, further enhancing model editing performance. Extensive experiments on two publicly available datasets demonstrate the superiority of GeoEdit over existing state-of-the-art methods.
Abstract:Accurate human localization is crucial for various applications, especially in the Metaverse era. Existing high precision solutions rely on expensive, tag-dependent hardware, while vision-based methods offer a cheaper, tag-free alternative. However, current vision solutions based on stereo vision face limitations due to rigid perspective transformation principles and error propagation in multi-stage SVD solvers. These solutions also require multiple high-resolution cameras with strict setup constraints.To address these limitations, we propose a probabilistic approach that considers all points on the human body as observations generated by a distribution centered around the body's geometric center. This enables us to improve sampling significantly, increasing the number of samples for each point of interest from hundreds to billions. By modeling the relation between the means of the distributions of world coordinates and pixel coordinates, leveraging the Central Limit Theorem, we ensure normality and facilitate the learning process. Experimental results demonstrate human localization accuracy of 96\% within a 0.3$m$ range and nearly 100\% accuracy within a 0.5$m$ range, achieved at a low cost of only 10 USD using two web cameras with a resolution of 640$\times$480 pixels.
Abstract:Psychological resilience, defined as the ability to rebound from adversity, is crucial for mental health. Compared with traditional resilience assessments through self-reported questionnaires, resilience assessments based on neurological data offer more objective results with biological markers, hence significantly enhancing credibility. This paper proposes a novel data-efficient model to address the scarcity of neurological data. We employ Neuro Kolmogorov-Arnold Networks as the structure of the prediction model. In the training stage, a new trait-informed multimodal representation algorithm with a smart chunk technique is proposed to learn the shared latent space with limited data. In the test stage, a new noise-informed inference algorithm is proposed to address the low signal-to-noise ratio of the neurological data. The proposed model not only shows impressive performance on both public datasets and self-constructed datasets but also provides some valuable psychological hypotheses for future research.
Abstract:Urban time series, such as mobility flows, energy consumption, and pollution records, encapsulate complex urban dynamics and structures. However, data collection in each city is impeded by technical challenges such as budget limitations and sensor failures, necessitating effective data imputation techniques that can enhance data quality and reliability. Existing imputation models, categorized into learning-based and analytics-based paradigms, grapple with the trade-off between capacity and generalizability. Collaborative learning to reconstruct data across multiple cities holds the promise of breaking this trade-off. Nevertheless, urban data's inherent irregularity and heterogeneity issues exacerbate challenges of knowledge sharing and collaboration across cities. To address these limitations, we propose a novel collaborative imputation paradigm leveraging meta-learned implicit neural representations (INRs). INRs offer a continuous mapping from domain coordinates to target values, integrating the strengths of both paradigms. By imposing embedding theory, we first employ continuous parameterization to handle irregularity and reconstruct the dynamical system. We then introduce a cross-city collaborative learning scheme through model-agnostic meta learning, incorporating hierarchical modulation and normalization techniques to accommodate multiscale representations and reduce variance in response to heterogeneity. Extensive experiments on a diverse urban dataset from 20 global cities demonstrate our model's superior imputation performance and generalizability, underscoring the effectiveness of collaborative imputation in resource-constrained settings.
Abstract:Artificial Intelligence Generated Content (AIGC) has gained significant popularity for creating diverse content. Current AIGC models primarily focus on content quality within a centralized framework, resulting in a high service delay and negative user experiences. However, not only does the workload of an AIGC task depend on the AIGC model's complexity rather than the amount of data, but the large model and its multi-layer encoder structure also result in a huge demand for computational and memory resources. These unique characteristics pose new challenges in its modeling, deployment, and scheduling at edge networks. Thus, we model an offloading problem among edges for providing real AIGC services and propose LAD-TS, a novel Latent Action Diffusion-based Task Scheduling method that orchestrates multiple edge servers for expedited AIGC services. The LAD-TS generates a near-optimal offloading decision by leveraging the diffusion model's conditional generation capability and the reinforcement learning's environment interaction ability, thereby minimizing the service delays under multiple resource constraints. Meanwhile, a latent action diffusion strategy is designed to guide decision generation by utilizing historical action probability, enabling rapid achievement of near-optimal decisions. Furthermore, we develop DEdgeAI, a prototype edge system with a refined AIGC model deployment to implement and evaluate our LAD-TS method. DEdgeAI provides a real AIGC service for users, demonstrating up to 29.18% shorter service delays than the current five representative AIGC platforms. We release our open-source code at https://github.com/ChangfuXu/DEdgeAI/.
Abstract:Traffic prediction plays a crucial role in intelligent transportation systems. Existing approaches primarily focus on improving overall accuracy, often neglecting a critical issue: whether predictive models lead to biased decisions by transportation authorities. In practice, the uneven deployment of traffic sensors across urban areas results in imbalanced data, causing prediction models to perform poorly in certain regions and leading to unfair decision-making. This imbalance ultimately harms the equity and quality of life for residents. Moreover, current fairness-aware machine learning models only ensure fairness at specific time points, failing to maintain fairness over extended periods. As traffic conditions change, such static fairness approaches become ineffective. To address this gap, we propose FairTP, a framework for prolonged fair traffic prediction. We introduce two new fairness definitions tailored for dynamic traffic scenarios. Fairness in traffic prediction is not static; it varies over time and across regions. Each sensor or urban area can alternate between two states: "sacrifice" (low prediction accuracy) and "benefit" (high prediction accuracy). Prolonged fairness is achieved when the overall states of sensors remain similar over a given period. We define two types of fairness: region-based static fairness and sensor-based dynamic fairness. To implement this, FairTP incorporates a state identification module to classify sensors' states as either "sacrifice" or "benefit," enabling prolonged fairness-aware predictions. Additionally, we introduce a state-guided balanced sampling strategy to further enhance fairness, addressing performance disparities among regions with uneven sensor distributions. Extensive experiments on two real-world datasets demonstrate that FairTP significantly improves prediction fairness while minimizing accuracy degradation.
Abstract:Medical Visual Question Answering (VQA) is an essential technology that integrates computer vision and natural language processing to automatically respond to clinical inquiries about medical images. However, current medical VQA datasets exhibit two significant limitations: (1) they often lack visual and textual explanations for answers, which impedes their ability to satisfy the comprehension needs of patients and junior doctors; (2) they typically offer a narrow range of question formats, inadequately reflecting the diverse requirements encountered in clinical scenarios. These limitations pose significant challenges to the development of a reliable and user-friendly Med-VQA system. To address these challenges, we introduce a large-scale, Groundable, and Explainable Medical VQA benchmark for chest X-ray diagnosis (GEMeX), featuring several innovative components: (1) A multi-modal explainability mechanism that offers detailed visual and textual explanations for each question-answer pair, thereby enhancing answer comprehensibility; (2) Four distinct question types, open-ended, closed-ended, single-choice, and multiple-choice, that better reflect diverse clinical needs. We evaluated 10 representative large vision language models on GEMeX and found that they underperformed, highlighting the dataset's complexity. However, after fine-tuning a baseline model using the training set, we observed a significant performance improvement, demonstrating the dataset's effectiveness. The project is available at www.med-vqa.com/GEMeX.