Department of Electrical and Electronic Engineering, Imperial College London, London, U.K, and Silicon Austria Labs
Abstract:Smart radio environments (SREs) enhance wireless communications by allowing control over the channel. They have been enabled through surfaces with reconfigurable electromagnetic (EM) properties, known as reconfigurable intelligent surfaces (RISs), and through flexible antennas, which can be viewed as realizations of SREs in the EM domain and space domain, respectively. However, these technologies rely on electronically reconfigurable or movable components, introducing implementation challenges that could hinder commercialization. To overcome these challenges, we propose a new domain to enable SREs, the frequency domain, through the concept of movable signals, where the signal spectrum can be dynamically moved along the frequency axis. We first analyze movable signals in multiple-input single-output (MISO) systems under line-of-sight (LoS) conditions, showing that they can achieve higher average received power than quantized equal gain transmission (EGT). We then study movable signals under non-line-of-sight (NLoS) conditions, showing that they remain effective by leveraging reflections from surfaces made of uniformly spaced elements with fixed EM properties, denoted as fixed intelligent surfaces (FISs). Analytical results reveal that a FIS-aided system using movable signals can achieve up to four times the received power of a RIS-aided system using fixed-frequency signals.
Abstract:We investigate the problem of maximizing the sum-rate performance of a beyond-diagonal reconfigurable intelligent surface (BD-RIS)-aided multi-user (MU)-multiple-input single-output (MISO) system using fractional programming (FP) techniques. More specifically, we leverage the Lagrangian Dual Transform (LDT) and Quadratic Transform (QT) to derive an equivalent objective function which is then solved iteratively via a manifold optimization framework. It is shown that these techniques reduce the complexity of the optimization problem for the scattering matrix solution, while also providing notable performance gains compared to state-of-the-art (SotA) methods under the same system conditions. Simulation results confirm the effectiveness of the proposed method in improving sum-rate performance.
Abstract:Reconfigurable intelligent surface (RIS) is a promising technology for future wireless communication systems. Conventional RIS is constrained to a diagonal scattering matrix, which limits its flexibility. Recently, beyond-diagonal RIS (BD-RIS) has been proposed as a more general RIS architecture class that allows inter-element connections and shows great potential for performance improvement. Despite extensive progress on BD-RIS, most existing studies rely on simplified channel models that ignore practical electromagnetic (EM) effects such as mutual coupling and impedance mismatching. To address this gap, this paper investigates the architecture design and optimization of BD-RIS under the general physics-consistent model derived with multiport network theory in recent literature. Building on a compact reformulation of this model, we show that band-connected RIS achieves the same channel-shaping capability as fully-connected RIS, which extends existing results obtained for conventional channel models. We then develop optimization methods under the general physics-consistent model; specifically, we derive closed-form solutions for single-input single-output (SISO) systems, propose a globally optimal semidefinite relaxation (SDR)-based algorithm for single-stream multi-input multi-output (MIMO) systems, and design an efficient alternating direction method of multipliers (ADMM)-based algorithm for multiuser MIMO systems. Using the proposed algorithms, we conduct comprehensive simulations to evaluate the impact of various EM effects and approximations, including mutual coupling among RIS antennas and the commonly adopted unilateral approximation, on system performance.
Abstract:Massive multiple-input multiple-output (MIMO) systems employing one-bit digital-to-analog converters offer a hardware-efficient solution for wireless communications. However, the one-bit constraint poses significant challenges for precoding design, as it transforms the problem into a discrete and nonconvex optimization task. In this paper, we investigate a widely adopted ``convex-relaxation-then-quantization" approach for nonlinear symbol-level one-bit precoding. Specifically, we first solve a convex relaxation of the discrete minimum mean square error precoding problem, and then quantize the solution to satisfy the one-bit constraint. To analyze the high-dimensional asymptotic performance of this scheme, we develop a novel analytical framework based on approximate message passing (AMP). This framework enables us to derive a closed-form expression for the symbol error probability (SEP) at the receiver side in the large-system limit, which provides a quantitative characterization of how model and system parameters affect the SEP performance. Our empirical results suggest that the $\ell_\infty^2$ regularizer, when paired with an optimally chosen regularization parameter, achieves optimal SEP performance within a broad class of convex regularization functions. As a first step towards a theoretical justification, we prove the optimality of the $\ell_\infty^2$ regularizer within the mixed $\ell_\infty^2$-$\ell_2^2$ regularization functions.
Abstract:To meet the demands of future wireless networks, antenna arrays must scale from massive multiple-input multiple-output (MIMO) to gigantic MIMO, involving even larger numbers of antennas. To address the hardware and computational cost of gigantic MIMO, several strategies are available that shift processing from the digital to the analog domain. Among them, microwave linear analog computers (MiLACs) offer a compelling solution by enabling fully analog beamforming through reconfigurable microwave networks. Prior work has focused on fully-connected MiLACs, whose ports are all interconnected to each other via tunable impedance components. Although such MiLACs are capacity-achieving, their circuit complexity, given by the number of required impedance components, scales quadratically with the number of antennas, limiting their practicality. To solve this issue, in this paper, we propose a graph theoretical model of MiLAC facilitating the systematic design of lower-complexity MiLAC architectures. Leveraging this model, we propose stem-connected MiLACs as a family of MiLAC architectures maintaining capacity-achieving performance while drastically reducing the circuit complexity. Besides, we optimize stem-connected MiLACs with a closed-form capacity-achieving solution. Our theoretical analysis, confirmed by numerical simulations, shows that stem-connected MiLACs are capacity-achieving, but with circuit complexity that scales linearly with the number of antennas, enabling high-performance, scalable, gigantic MIMO.
Abstract:Rate-Splitting Multiple Access (RSMA) has been recognized as a promising multiple access technique for future wireless communication systems. Recent research demonstrates that RSMA can maintain its superiority without relying on Successive Interference Cancellation (SIC) receivers. In practical systems, SIC-free receivers are more attractive than SIC receivers because of their low complexity and latency. This paper evaluates the theoretical limits of RSMA with and without SIC receivers under finite constellations. We first derive the constellation-constrained rate expressions for RSMA. We then design algorithms based on projected subgradient ascent to optimize the precoders and maximize the weighted sum-rate or max-min fairness (MMF) among users. To apply the proposed optimization algorithms to large-scale systems, one challenge lies in the exponentially increasing computational complexity brought about by the constellation-constrained rate expressions. In light of this, we propose methods to avoid such computational burden. Numerical results show that, under optimized precoders, SIC-free RSMA leads to minor losses in weighted sum-rate and MMF performance in comparison to RSMA with SIC receivers, making it a viable option for future implementations.
Abstract:Interference widely exists in communication systems and is often not optimally treated at the receivers due to limited knowledge and/or computational burden. Evolutions of receivers have been proposed to balance complexity and spectral efficiency, for example, for 6G, while commonly used performance metrics, such as capacity and mutual information, fail to capture the suboptimal treatment of interference, leading to potentially inaccurate performance evaluations. Mismatched decoding is an information-theoretic tool for analyzing communications with suboptimal decoders. In this work, we use mismatched decoding to analyze communications with decoders that treat interference suboptimally, aiming at more accurate performance metrics. Specifically, we consider a finite-alphabet input Gaussian channel under interference, representative of modern systems, where the decoder can be matched (optimal) or mismatched (suboptimal) to the channel. The matched capacity is derived using Mutual Information (MI), while a lower bound on the mismatched capacity under various decoding metrics is derived using the Generalized Mutual Information (GMI). We show that the decoding metric in the proposed channel model is closely related to the behavior of the demodulator in Bit-Interleaved Coded Modulation (BICM) systems. Simulations illustrate that GMI/MI accurately predicts the throughput performance of BICM-type systems. Finally, we extend the channel model and the GMI to multiple antenna cases, with an example of multi-user multiple-input-single-output (MU-MISO) precoder optimization problem considering GMI under different decoding strategies. In short, this work discovers new insights about the impact of interference, proposes novel receivers, and introduces a new design and performance evaluation framework that more accurately captures the effect of interference.
Abstract:Future wireless systems, known as gigantic multiple-input multiple-output (MIMO), are expected to enhance performance by significantly increasing the number of antennas, e.g., a few thousands. To enable gigantic MIMO overcoming the scalability limitations of digital architectures, microwave linear analog computers (MiLACs) have recently emerged. A MiLAC is a multiport microwave network that processes input microwave signals entirely in the analog domain, thereby reducing hardware costs and computational complexity of gigantic MIMO architectures. In this paper, we investigate the fundamental limits on the rate achievable in MiLAC-aided MIMO systems. We model a MIMO system employing MiLAC-aided beamforming at the transmitter and receiver, and formulate the rate maximization problem to optimize the microwave networks of the MiLACs, which are assumed lossless and reciprocal for practical reasons. Under the lossless and reciprocal constraints, we derive a global optimal solution for the microwave networks of the MiLACs in closed form. In addition, we also characterize in closed-form the capacity of MIMO systems operating MiLAC-aided beamforming. Our theoretical analysis, confirmed by numerical simulations, reveals that MiLAC-aided beamforming achieves the same capacity as digital beamforming, while significantly reducing the number of radio frequency (RF) chains, analog-to-digital converters (ADCs)/digital-to-analog converters (DACs) resolution requirements, and computational complexity.




Abstract:Written by its inventors, this first tutorial on Beyond-Diagonal Reconfigurable Intelligent Surfaces (BD-RISs) provides the readers with the basics and fundamental tools necessary to appreciate, understand, and contribute to this emerging and disruptive technology. Conventional (Diagonal) RISs (D-RISs) are characterized by a diagonal scattering matrix $\mathbf{\Theta}$ such that the wave manipulation flexibility of D-RIS is extremely limited. In contrast, BD-RIS refers to a novel and general framework for RIS where its scattering matrix is not limited to be diagonal (hence, the ``beyond-diagonal'' terminology) and consequently, all entries of $\mathbf{\Theta}$ can potentially help shaping waves for much higher manipulation flexibility. This physically means that BD-RIS can artificially engineer and reconfigure coupling across elements of the surface thanks to inter-element reconfigurable components which allow waves absorbed by one element to flow through other elements. Consequently, BD-RIS opens the door to more general and versatile intelligent surfaces that subsumes existing RIS architectures as special cases. In this tutorial, we share all the secret sauce to model, design, and optimize BD-RIS and make BD-RIS transformative in many different applications. Topics discussed include physics-consistent and multi-port network-aided modeling; transmitting, reflecting, hybrid, and multi-sector mode analysis; reciprocal and non-reciprocal architecture designs and optimal performance-complexity Pareto frontier of BD-RIS; signal processing, optimization, and channel estimation for BD-RIS; hardware impairments (discrete-value impedance and admittance, lossy interconnections and components, wideband effects, mutual coupling) of BD-RIS; benefits and applications of BD-RIS in communications, sensing, power transfer.
Abstract:We present the first experimental prototype of a reflective beyond-diagonal reconfigurable intelligent surface (BD-RIS), i.e., a RIS with reconfigurable inter-element connections. Our BD-RIS consists of an antenna array whose ports are terminated by a tunable load network. The latter can terminate each antenna port with three distinct individual loads or connect it to an adjacent antenna port. Extensive performance evaluations in a rich-scattering environment validate that inter-element connections are beneficial. Moreover, we observe that our tunable load network's mentioned hardware constraints significantly influence, first, the achievable performance, second, the benefits of having inter-element connections, and, third, the importance of mutual-coupling awareness during optimization.