Abstract:Pinching antenna systems (PASS) present a breakthrough among the flexible-antenna technologies, and distinguish themselves by facilitating large-scale antenna reconfiguration, line-of-sight creation, scalable implementation, and near-field benefits, thus bringing wireless communications from the last mile to the last meter. A comprehensive tutorial is presented in this paper. First, the fundamentals of PASS are discussed, including PASS signal models, hardware models, power radiation models, and pinching antenna activation methods. Building upon this, the information-theoretic capacity limits achieved by PASS are characterized, and several typical performance metrics of PASS-based communications are analyzed to demonstrate its superiority over conventional antenna technologies. Next, the pinching beamforming design is investigated. The corresponding power scaling law is first characterized. For the joint transmit and pinching design in the general multiple-waveguide case, 1) a pair of transmission strategies is proposed for PASS-based single-user communications to validate the superiority of PASS, namely sub-connected and fully connected structures; and 2) three practical protocols are proposed for facilitating PASS-based multi-user communications, namely waveguide switching, waveguide division, and waveguide multiplexing. A possible implementation of PASS in wideband communications is further highlighted. Moreover, the channel state information acquisition in PASS is elaborated with a pair of promising solutions. To overcome the high complexity and suboptimality inherent in conventional convex-optimization-based approaches, machine-learning-based methods for operating PASS are also explored, focusing on selected deep neural network architectures and training algorithms. Finally, several promising applications of PASS in next-generation wireless networks are highlighted.
Abstract:Two subspace fitting approaches are proposed for wideband near-field localization. Unlike in conventional far-field systems, where distance and angle can be estimated separately, spherical wave propagation in near-field systems couples these parameters. We therefore derive a frequency-domain near-field signal model for multi-target wideband systems and develop a subspace fitting-based MUSIC method that jointly estimates distance and angle. To reduce complexity, a Fresnel approximation MUSIC algorithm is further introduced to decouple the distance and angle parameters. Numerical results verify the effectiveness of both proposed approaches.
Abstract:Unlike conventional systems using a fixed-location antenna, the channel capacity of the pinching-antenna system (PASS) is determined by the activated positions of pinching antennas. This article characterizes the capacity region of multiuser PASS, where a single pinched waveguide is deployed to enable both uplink and downlink communications. The capacity region of the uplink channel is first characterized. \romannumeral1) For the single-pinch case, closed-form expressions are derived for the optimal antenna activation position, along with the corresponding capacity region and the achievable data rate regions under time-division multiple access (TDMA) and frequency-division multiple access (FDMA). It is proven that the capacity region of PASS encompasses that of conventional fixed-antenna systems, and that the FDMA rate region contains the TDMA rate region. \romannumeral2) For the multiple-pinch case, inner and outer bounds on the capacity region are derived using an element-wise alternating antenna position optimization technique and the Cauchy-Schwarz inequality, respectively. The achievable FDMA rate region is also derived using the same optimization framework, while the TDMA rate region is obtained through an antenna position refinement approach. The analysis is then extended to the downlink PASS using the uplink-downlink duality framework. It is proven that the relationships among the downlink capacity and rate regions are consistent with those in the uplink case. Numerical results demonstrate that: \romannumeral1) the derived bounds closely approximate the exact capacity region, \romannumeral2) PASS yields a significantly enlarged capacity region compared to conventional fixed-antenna systems, and \romannumeral3) in the multiple-pinch case, TDMA and FDMA are capable of approaching the channel capacity limit.
Abstract:A wireless sensing architecture via pinching antenna systems is proposed. Compared to conventional wireless systems, PASS offers flexible antenna deployment and improved probing performance for wireless sensing by leveraging dielectric waveguides and pinching antennas (PAs). To enhance signal reception, leaky coaxial (LCX) cables are used to uniformly collect echo signals over a wide area. The Cram\'er-Rao bound (CRB) for multi-target sensing is derived and then minimized through the joint optimization of the transmit waveform and the positions of PAs. To solve the resulting highly coupled, non-convex problem, a two-stage particle swarm optimization (PSO)-based algorithm is proposed. Numerical results demonstrate significant gains in sensing accuracy and robustness over conventional sensing systems, highlighting the benefits of integrating LCX-based reception with optimized PASS configurations.
Abstract:The Pinching-Antenna SyStem (PASS) reconstructs wireless channels through \emph{pinching beamforming}, wherein the activated positions of pinching antennas along dielectric waveguides are optimized to shape the radiation pattern. The aim of this article is to analyze the performance limits of employing PASS in integrated sensing and communications (ISAC). Specifically, a PASS-assisted ISAC system is considered, where a pinched waveguide is utilized to simultaneously communicate with a user and sense a target. Closed-form expressions for the achievable communication rate (CR) and sensing rate (SR) are derived to characterize the information-theoretic limits of this dual-functional operation. \romannumeral1) For the single-pinch case, closed-form solutions for the optimal pinching antenna location are derived under \emph{sensing-centric (S-C)}, \emph{communications-centric (C-C)}, and \emph{Pareto-optimal} designs. On this basis, the CR-SR trade-off is characterized by deriving the full CR-SR rate region, which is shown to encompass that of conventional fixed-antenna systems. \romannumeral2) For the multiple-pinch case, an antenna location refinement method is applied to obtain the optimal C-C and S-C pinching beamformers. As a further advance, inner and outer bounds on the achievable CR-SR region are derived using an element-wise alternating optimization technique and by invoking Cauchy-Schwarz and Karamata's inequalities, respectively. Numerical results demonstrate that: \romannumeral1) the derived bounds closely approximate the true CR-SR region; and \romannumeral2) PASS can achieve a significantly larger rate region than conventional-antenna systems.
Abstract:Pinching-antenna systems (PASS) improve wireless links by configuring the locations of activated pinching antennas along dielectric waveguides, namely pinching beamforming. In this paper, a novel adjustable power radiation model is proposed for PASS, where power radiation ratios of pinching antennas can be flexibly controlled by tuning the spacing between pinching antennas and waveguides. A closed-form pinching antenna spacing arrangement strategy is derived to achieve the commonly assumed equal-power radiation. Based on this, a practical PASS framework relying on discrete activation is considered, where pinching antennas can only be activated among a set of predefined locations. A transmit power minimization problem is formulated, which jointly optimizes the transmit beamforming, pinching beamforming, and the numbers of activated pinching antennas, subject to each user's minimum rate requirement. (1) To solve the resulting highly coupled mixed-integer nonlinear programming (MINLP) problem, branch-and-bound (BnB)-based algorithms are proposed for both single-user and multi-user scenarios, which is guaranteed to converge to globally optimal solutions. (2) A low-complexity many-to-many matching algorithm is further developed. Combined with the Karush-Kuhn-Tucker (KKT) theory, locally optimal and pairwise-stable solutions are obtained within polynomial-time complexity. Simulation results demonstrate that: (i) PASS significantly outperforms conventional multi-antenna architectures, particularly when the number of users and the spatial range increase; and (ii) The proposed matching-based algorithm achieves near-optimal performance, resulting in only a slight performance loss while significantly reducing computational overheads. Code is available at https://github.com/xiaoxiaxusummer/PASS_Discrete
Abstract:A Pinching-Antenna SyStem (PASS)-assisted convert communication framework is proposed. PASS utilizes dielectric waveguides with freely positioned pinching antennas (PAs) to establish strong line-of-sight links. Capitalizing on this high reconfigurable flexibility of antennas, the potential of PASS for covert communications is investigated. 1)~For the single-waveguide single-PA (SWSP) scenario, a closed-form optimal PA position that maximizes the covert rate is first derived. Subsequently, a one-dimensional power search is employed to enable low-complexity optimization for covert communications. With antenna mobility on a scale of meters, PASS can deal with the challenging situation of the eavesdropper enjoying better channel conditions than the legal user. 2)~For the multi-waveguide multi-PA (MWMP) scenario, the positions of multiple PAs are optimized to enable effective pinching beamforming, thereby enhancing the covert rate. To address the resultant multimodal joint transmit and pinching beamforming problem, a twin particle swarm optimization (TwinPSO) approach is proposed. Numerical results demonstrate that: i)~the proposed approaches can effectively resolve the optimization problems; ii)~PASS achieves a higher covert rate than conventional fixed-position antenna architectures; and iii)~with enhanced flexibility, the MWMP setup outperforms the SWSP counterpart.
Abstract:A near-field motion parameter estimation method is proposed. In contract to far-field sensing systems, the near-field sensing system leverages spherical-wave characteristics to enable full-vector location and velocity estimation. Despite promising advantages, the near-field sensing system faces a significant challenge, where location and velocity parameters are intricately coupled within the signal. To address this challenge, a novel subarray-based variational message passing (VMP) method is proposed for near-field joint location and velocity estimation. First, a factor graph representation is introduced, employing subarray-level directional and Doppler parameters as intermediate variables to decouple the complex location-velocity dependencies. Based on this, the variational Bayesian inference is employed to obtain closed-form posterior distributions of subarray-level parameters. Subsequently, the message passing technique is employed, enabling tractable computation of location and velocity marginal distributions. Two implementation strategies are proposed: 1) System-level fusion that aggregates all subarray posteriors for centralized estimation, or 2) Subarray-level fusion where locally processed estimates from subarrays are fused through Guassian product rule. Cram\'er-Rao bounds for location and velocity estimation are derived, providing theoretical performance limits. Numerical results demonstrate that the proposed VMP method outperforms existing approaches while achieving a magnitude lower complexity. Specifically, the proposed VMP method achieves centimeter-level location accuracy and sub-m/s velocity accuracy. It also demonstrates robust performance for high-mobility targets, making the proposed VMP method suitable for real-time near-field sensing and communication applications.
Abstract:This article proposes a novel design for the Pinching Antenna Systems (PASS) and advocates simple yet efficient wireless communications over the `last meter'. First, the potential benefits of PASS are discussed by reviewing an existing prototype. Then, the fundamentals of PASS are introduced, including physical principles, signal models, and communication designs. In contrast to existing multi-antenna systems, PASS brings a novel concept termed \emph{Pinching Beamforming}, which is achieved by dynamically adjusting the positions of PAs. Based on this concept, a couple of practical transmission architectures are proposed for employing PASS, namely non-multiplexing and multiplexing architectures. More particularly, 1) The non-multiplexing architecture is featured by simple baseband signal processing and relies only on the pinching beamforming; while 2) the multiplexing architecture provides enhanced signal manipulation capabilities with joint baseband and pinching beamforming, which is further divided into sub-connected, fully-connected, and phase-shifter-based fully-connected schemes. Furthermore, several emerging scenarios are put forward for integrating PASS into future wireless networks. As a further advance, by demonstrating a few numerical case studies, the significant performance gain of PASS is revealed compared to conventional multi-antenna systems. Finally, several research opportunities and open problems of PASS are highlighted.
Abstract:Pinching antennas is a novel flexible-antenna technology, which can be realized by employing small dielectric particles on a waveguide. The aim of this letter is to characterize the array gain achieved by pinching-antenna systems (PASS). A closed-form upper bound on the array gain is derived by fixing the inter-antenna spacing. Asymptotic analyses of this bound are conducted by considering an infinitely large number of antennas, demonstrating the existence of an optimal number of antennas that maximizes the array gain. The relationship between the array gain and inter-antenna spacing is further explored by incorporating the effect of mutual coupling. It is proven that there also exists an optimal inter-antenna spacing that maximizes the array gain. Numerical results demonstrate that by optimizing the number of antennas and inter-antenna spacing, PASS can achieve a significantly larger array gain than conventional fixed-location antenna systems.