Abstract:Integrated sensing and communication (ISAC) has gained traction in academia and industry. Recently, multipath components (MPCs), as a type of spatial resource, have the potential to improve the sensing performance in ISAC systems, especially in richly scattering environments. In this paper, we propose to leverage MPC and Khatri-Rao space-time (KRST) code within a single ISAC system to realize high-accuracy sensing for multiple dynamic targets and multi-user communication. Specifically, we propose a novel MPC-enhanced sensing processing scheme with symbol-level fusion, referred to as the "SL-MPS" scheme, to achieve high-accuracy localization of multiple dynamic targets and empower the single ISAC system with a new capability of absolute velocity estimation for multiple targets with a single sensing attempt. Furthermore, the KRST code is applied to flexibly balance communication and sensing performance in richly scattering environments. To evaluate the contribution of MPCs, the closed-form Cram\'er-Rao lower bounds (CRLBs) of location and absolute velocity estimation are derived. Simulation results illustrate that the proposed SL-MPS scheme is more robust and accurate in localization and absolute velocity estimation compared with the existing state-of-the-art schemes.
Abstract:The pinching-antenna architecture has emerged as a promising solution for reconfiguring wireless propagation environments and enhancing system performance. While prior research has primarily focused on sum-rate maximization or transmit power minimization of pinching-antenna systems, the critical aspect of energy efficiency (EE) has received limited attention. Given the increasing importance of EE in future wireless communication networks, this work investigates EE optimization in a non-orthogonal multiple access (NOMA)-assisted multi-user pinching-antenna uplink system. The problem entails the joint optimization of the users' transmit power and the pinching-antenna position. The resulting optimization problem is non-convex due to tightly coupled variables. To tackle this, we employ an alternating optimization framework to decompose the original problem into two subproblems: one focusing on power allocation and the other on antenna positioning. A low-complexity optimal solution is derived for the power allocation subproblem, while the pinching-antenna positioning subproblem is addressed using a particle swarm optimization algorithm to obtain a high-quality near-optimal solution. Simulation results demonstrate that the proposed scheme significantly outperforms both conventional-antenna configurations and orthogonal multiple access-based pinching-antenna systems in terms of EE.
Abstract:In this paper, we investigate an uplink communication scenario in which multiple users communicate with an access point (AP) employing non-orthogonal multiple access (NOMA). A pinching antenna, which can be activated at an arbitrary point along a dielectric waveguide, is deployed at the AP to dynamically reconfigure user channels. The objective is to maximize the system sum rate by jointly optimizing the pinching-antenna's position and the users' transmit powers. The formulated optimization problem is non-convex, and addressed using the particle swarm optimization (PSO) algorithm. For performance benchmarking, two time division multiple access (TDMA) schemes are considered: one based on the pinching antenna individually activated for each user, and the other based on the single-pinching-antenna configuration serving all users. Numerical results demonstrate that the use of the pinching antenna significantly enhances the system sum rate compared to conventional antenna architectures. Moreover, the NOMA-based scheme outperforms the TDMA-based scheme with a single pinching antenna but is outperformed by the TDMA-based approach when the pinching antenna is adaptively configured for each user. Finally, the proposed PSO-based method is shown to achieve near-optimal performance for both NOMA and TDMA with a common pinching-antenna configuration.
Abstract:Extremely large-scale multiple-input multiple-output (XL-MIMO) is a key technology for next-generation wireless communication systems. By deploying significantly more antennas than conventional massive MIMO systems, XL-MIMO promises substantial improvements in spectral efficiency. However, due to the drastically increased array size, the conventional planar wave channel model is no longer accurate, necessitating a transition to a near-field spherical wave model. This shift challenges traditional beam training and channel estimation methods, which were designed for planar wave propagation. In this article, we present a comprehensive review of state-of-the-art beam training and channel estimation techniques for XL-MIMO systems. We analyze the fundamental principles, key methodologies, and recent advancements in this area, highlighting their respective strengths and limitations in addressing the challenges posed by the near-field propagation environment. Furthermore, we explore open research challenges that remain unresolved to provide valuable insights for researchers and engineers working toward the development of next-generation XL-MIMO communication systems.
Abstract:Time series frequently manifest distribution shifts, diverse latent features, and non-stationary learning dynamics, particularly in open and evolving environments. These characteristics pose significant challenges for out-of-distribution (OOD) generalization. While substantial progress has been made, a systematic synthesis of advancements remains lacking. To address this gap, we present the first comprehensive review of OOD generalization methodologies for time series, organized to delineate the field's evolutionary trajectory and contemporary research landscape. We organize our analysis across three foundational dimensions: data distribution, representation learning, and OOD evaluation. For each dimension, we present several popular algorithms in detail. Furthermore, we highlight key application scenarios, emphasizing their real-world impact. Finally, we identify persistent challenges and propose future research directions. A detailed summary of the methods reviewed for the generalization of OOD in time series can be accessed at https://tsood-generalization.com.
Abstract:In this paper, we investigate an intelligent reflecting surface (IRS) assisted full-duplex (FD) integrated sensing, communication and computing system. Specifically, an FD base station (BS) provides service for uplink and downlink transmission, and a local cache is connected to the BS through a backhaul link to store data. Meanwhile, active sensing elements are deployed on the IRS to receive target echo signals. On this basis, in order to evaluate the overall performance of the system under consideration, we propose a system utility maximization problem while ensuring the sensing quality, expressed as the difference between the sum of communication throughput, total computation bits (offloading bits and local computation bits) and the total backhaul cost for content delivery. This makes the problem difficult to solve due to the highly non-convex coupling of the optimization variables. To effectively solve this problem, we first design the most effective caching strategy. Then, we develop an algorithm based on weighted minimum mean square error, alternative direction method of multipliers, majorization-minimization framework, semi-definite relaxation techniques, and several complex transformations to jointly solve the optimization variables. Finally, simulation results are provided to verify the utility performance of the proposed algorithm and demonstrate the advantages of the proposed scheme compared with the baseline scheme.
Abstract:In the evolution towards the forthcoming era of sixth-generation (6G) mobile communication systems characterized by ubiquitous intelligence, integrated sensing and communication (ISAC) is in a phase of burgeoning development. However, the capabilities of communication and sensing within single frequency band fall short of meeting the escalating demands. To this end, this paper introduces a carrier aggregation (CA)- enabled multi-input multi-output orthogonal frequency division multiplexing (MIMO-OFDM) ISAC system fusing the sensing data on high and low-frequency bands by symbol-level fusion for ultimate communication experience and high-accuracy sensing. The challenges in sensing signal processing introduced by CA include the initial phase misalignment of the echo signals on high and low-frequency bands due to attenuation and radar cross section, and the fusion of the sensing data on high and lowfrequency bands with different physical-layer parameters. To this end, the sensing signal processing is decomposed into two stages. In the first stage, the problem of initial phase misalignment of the echo signals on high and low-frequency bands is solved by the angle compensation, space-domain diversity and vector crosscorrelation operations. In the second stage, this paper realizes symbol-level fusion of the sensing data on high and low-frequency bands through sensing vector rearrangement and cyclic prefix adjustment operations, thereby obtaining high-precision sensing performance. Then, the closed-form communication mutual information (MI) and sensing Cramer-Rao lower bound (CRLB) for the proposed ISAC system are derived to explore the theoretical performance bound with CA. Simulation results validate the feasibility and superiority of the proposed ISAC system.
Abstract:In this letter, we propose a deep-unfolding-based framework (DUNet) to maximize the secrecy rate in reconfigurable intelligent surface (RIS) empowered multi-user wireless networks. To tailor DUNet, first we relax the problem, decouple it into beamforming and phase shift subproblems, and propose an alternative optimization (AO) based solution for the relaxed problem. Second, we apply Karush-Kuhn-Tucker (KKT) conditions to obtain a closed-form solutions for the beamforming and the phase shift. Using deep-unfolding mechanism, we transform the closed-form solutions into a deep learning model (i.e., DUNet) that achieves a comparable performance to that of AO in terms of accuracy and about 25.6 times faster.
Abstract:Human albumin is essential for indicating the body's overall health. Accurately predicting plasma albumin levels and determining appropriate doses are urgent clinical challenges, particularly in critically ill patients, to maintain optimal blood levels. However, human albumin prediction is non-trivial that has to leverage the dynamics of biochemical markers as well as the experience of treating patients. Moreover, the problem of distribution shift is often encountered in real clinical data, which may lead to a decline in the model prediction performance and reduce the reliability of the model's application. In this paper, we propose a framework named Out-of-Distribution Generalized Dynamic Graph Neural Network for Human Albumin Prediction (DyG-HAP), which is able to provide accurate albumin predictions for Intensity Care Unit (ICU) patients during hospitalization. We first model human albumin prediction as a dynamic graph regression problem to model the dynamics and patient relationship. Then, we propose a disentangled dynamic graph attention mechanism to capture and disentangle the patterns whose relationship to labels under distribution shifts is invariant and variant respectively. Last, we propose an invariant dynamic graph regression method to encourage the model to rely on invariant patterns to make predictions. Moreover, we propose a dataset named Albumin level testing and nutritional dosing data for Intensive Care (ANIC) for evaluation. Extensive experiments demonstrate the superiority of our method compared to several baseline methods in human albumin prediction.
Abstract:This article delves into advancements in resource allocation techniques tailored for systems utilizing reconfigurable intelligent surfaces (RIS), with a primary focus on achieving low-complexity and resilient solutions. The investigation of low-complexity approaches for RIS holds significant relevance, primarily owing to the intricate characteristics inherent in RIS-based systems and the need of deploying large-scale RIS arrays. Concurrently, the exploration of robust solutions aims to address the issue of hardware impairments occurring at both the transceivers and RIS components in practical RIS-assisted systems. In the realm of both low-complexity and robust resource allocation, this article not only elucidates the fundamental techniques underpinning these methodologies but also offers comprehensive numerical results for illustrative purposes. The necessity of adopting resource allocation strategies that are both low in complexity and resilient is thoroughly established. Ultimately, this article provides prospective research avenues in the domain of low-complexity and robust resource allocation techniques tailored for RIS-assisted systems.