Abstract:The pinching-antenna system (PASS) reconstructs wireless channels through pinching beamforming, i.e., optimizing the activated locations of pinching antennas (PAs) along the waveguide. The aim of this article is to investigate the joint design of baseband beamforming and pinching beamforming. A low-complexity element-wise sequential optimization framework is proposed to address the sum-rate maximization problem in PASS-enabled downlink and uplink channels. i) For the downlink scenario, maximum ratio transmission (MRT), zero-forcing (ZF), and minimum mean square error (MMSE) beamforming schemes are employed as baseband beamformers. For each beamformer, a closed-form expression for the downlink sum-rate is derived as a single-variable function with respect to the pinching beamformer. Based on this, a sequential optimization method is proposed, where the positions of the PAs are updated element-wise using a low-complexity one-dimensional search. ii) For the uplink scenario, signal detection is performed using maximum ratio combining (MRC), ZF, and MMSE combiners. A closed-form sum-rate expression is derived for each linear combiner, and a similar element-wise design is applied to optimize the pinching beamforming. Numerical results are provided to validate the effectiveness of the proposed method and demonstrate that: (i) For all considered linear beamformers, the proposed PASS architecture outperforms conventional fixed-antenna systems in terms of sum-rate performance; (ii) in both downlink and uplink channels, ZF achieves performance close to that of MMSE and significantly outperforms MRT or MRC; and (iii) the proposed element-wise design eliminates the need for alternating updates between the baseband and pinching beamformers, thereby ensuring low computational complexity.
Abstract:A wireless sensing architecture via pinching antenna systems is proposed. Compared to conventional wireless systems, PASS offers flexible antenna deployment and improved probing performance for wireless sensing by leveraging dielectric waveguides and pinching antennas (PAs). To enhance signal reception, leaky coaxial (LCX) cables are used to uniformly collect echo signals over a wide area. The Cram\'er-Rao bound (CRB) for multi-target sensing is derived and then minimized through the joint optimization of the transmit waveform and the positions of PAs. To solve the resulting highly coupled, non-convex problem, a two-stage particle swarm optimization (PSO)-based algorithm is proposed. Numerical results demonstrate significant gains in sensing accuracy and robustness over conventional sensing systems, highlighting the benefits of integrating LCX-based reception with optimized PASS configurations.
Abstract:The Pinching-Antenna SyStem (PASS) reconstructs wireless channels through \emph{pinching beamforming}, wherein the activated positions of pinching antennas along dielectric waveguides are optimized to shape the radiation pattern. The aim of this article is to analyze the performance limits of employing PASS in integrated sensing and communications (ISAC). Specifically, a PASS-assisted ISAC system is considered, where a pinched waveguide is utilized to simultaneously communicate with a user and sense a target. Closed-form expressions for the achievable communication rate (CR) and sensing rate (SR) are derived to characterize the information-theoretic limits of this dual-functional operation. \romannumeral1) For the single-pinch case, closed-form solutions for the optimal pinching antenna location are derived under \emph{sensing-centric (S-C)}, \emph{communications-centric (C-C)}, and \emph{Pareto-optimal} designs. On this basis, the CR-SR trade-off is characterized by deriving the full CR-SR rate region, which is shown to encompass that of conventional fixed-antenna systems. \romannumeral2) For the multiple-pinch case, an antenna location refinement method is applied to obtain the optimal C-C and S-C pinching beamformers. As a further advance, inner and outer bounds on the achievable CR-SR region are derived using an element-wise alternating optimization technique and by invoking Cauchy-Schwarz and Karamata's inequalities, respectively. Numerical results demonstrate that: \romannumeral1) the derived bounds closely approximate the true CR-SR region; and \romannumeral2) PASS can achieve a significantly larger rate region than conventional-antenna systems.
Abstract:This article investigates the application of pinching-antenna systems (PASS) in multiuser multiple-input single-output (MISO) communications. Two sum-rate maximization problems are formulated under minimum mean square error (MMSE) decoding, with and without successive interference cancellation (SIC). To address the joint optimization of pinching antenna locations and user transmit powers, a fractional programming-based approach is proposed. Numerical results validate the effectiveness of the proposed method and show that PASS can significantly enhance uplink sum-rate performance compared to conventional fixed-antenna designs.
Abstract:The pinching-antenna system (PASS) introduces new degrees of freedom (DoFs) for physical layer security (PLS) through pinching beamforming. In this paper, a couple of scenarios for secure beamforming for PASS are studied. 1) For the case with a single legitimate user (Bob) and a single eavesdropper (Eve), a closed-form expression for the optimal baseband beamformer is derived. On this basis, a gradient-based method is proposed to optimize the activated positions of pinching antennas (PAs). 2) For the case with multiple Bobs and multiple Eves, a fractional programming (FP)-based block coordinate descent (BCD) algorithm, termed FP-BCD, is proposed for optimizing the weighted secrecy sum-rate (WSSR). Specifically, a closed-form baseband beamformer is obtained via Lagrange multiplier method. Furthermore, owing to the non-convex objective function exhibiting numerous stationary points, a low-complexity one-dimensional search is used to find a high-quality solution of the PAs' activated locations. Numerical results are provided to demonstrate that: i) All proposed algorithms achieve stable convergence within a few iterations, ii) across all considered power ranges, the FP-BCD algorithm outperforms baseline methods using zero-forcing (ZF) and maximal-ratio transmission (MRT) beamforming in terms of the WSSR, and iii) PASS achieves a significantly higher secrecy rate than traditional fixed-antenna systems.
Abstract:Pinching-antenna systems (PASSs) are a recent flexible-antenna technology that is realized by attaching simple components, referred to as pinching elements, to dielectric waveguides. This work explores the potential of deploying PASS for uplink and downlink transmission in multiuser MIMO settings. For downlink PASS-aided communication, we formulate the optimal hybrid beamforming, in which the digital precoding matrix at the access point and the location of pinching elements on the waveguides are jointly optimized to maximize the achievable weighted sum-rate. Invoking fractional programming and Gauss-Seidel approach, we propose two low-complexity algorithms to iteratively update the precoding matrix and activated locations of the pinching elements. We further study uplink transmission aided by a PASS, where an iterative scheme is designed to address the underlying hybrid multiuser detection problem. We validate the proposed schemes through extensive numerical experiments. The results demonstrate that using a PASS, the throughput in both uplink and downlink is boosted significantly as compared with baseline MIMO architectures, such as massive MIMO~and classical hybrid analog-digital designs. This highlights the great potential of PASSs, making it a promising reconfigurable antenna technology for next-generation wireless systems.
Abstract:The spatial degrees of freedom (DoFs) of a continuous-aperture array (CAPA)-based continuous electromagnetic (EM) channel are analyzed. To this end, a simplified spatial model is derived using the Fresnel approximation. Leveraging this model and Landau's theorem, a closed-form expression for the spatial DoFs is derived. It is demonstrated that the number of DoFs is proportional to the transmit and receive aperture sizes while being inversely proportional to the propagation distance. Numerical results are provided to validate the accuracy of the derived expressions.
Abstract:A continuous-aperture array (CAPA)-based integrated sensing and communications (ISAC) framework is proposed for both downlink and uplink scenarios. Within this framework, continuous operator-based signal models are employed to describe the sensing and communication processes. The performance of communication and sensing is analyzed using two information-theoretic metrics: the communication rate (CR) and the sensing rate (SR). 1) For downlink ISAC, three continuous beamforming designs are proposed: i) the communications-centric (C-C) design that maximizes the CR, ii) the sensing-centric (S-C) design that maximizes the SR, and iii) the Pareto-optimal design that characterizes the Pareto boundary of the CR-SR region. A signal subspace-based approach is proposed to derive the closed-form optimal beamformers for the considered designs. On this basis, closed-form expressions are derived for the achievable CRs and SRs, and the downlink rate region achieved by CAPAs is characterized. 2) For uplink ISAC, the C-C and S-C successive interference cancellation (SIC)-based methods are proposed to manage inter-functionality interference. Using the subspace approach along with the time-sharing technique, closed-form expressions for the optimal beamformers are derived, and the achievable CRs, SRs, and rate region are analyzed. Numerical results demonstrate that, for both downlink and uplink, CAPA-based ISAC achieves higher CRs and SRs as well as larger CR-SR regions compared to conventional spatially discrete array (SPDA)-based ISAC.
Abstract:The channel statistics of a continuous-aperture array (CAPA)-based channel are analyzed using its continuous electromagnetic (EM) properties. The received signal-to-noise ratio (SNR) is discussed under isotropic scattering conditions. Using Landau's theorem, the eigenvalues of the autocorrelation of the EM fading channel are shown to exhibit a step-like behavior. Building on this, closed-form expressions for the probability distribution of the SNR and the average channel capacity are derived. Numerical results are provided to validate the accuracy of the derivations.
Abstract:Pinching antennas have been recently proposed as a promising flexible-antenna technology, which can be implemented by attaching low-cost pinching elements to dielectric waveguides. This work explores the potential of employing pinching antenna systems (PASs) for downlink transmission in a multiuser MIMO setting. We consider the problem of hybrid beamforming, where the digital precoder at the access point and the activated locations of the pinching elements are jointly optimized to maximize the achievable weighted sum-rate. Invoking fractional programming, a novel low-complexity algorithm is developed to iteratively update the precoding matrix and the locations of the pinching antennas. We validate the proposed scheme through extensive numerical experiments. Our investigations demonstrate that using PAS the system throughput can be significantly boosted as compared with the conventional fixed-location antenna systems, enlightening the potential of PAS as an enabling candidate for next-generation wireless networks.