Abstract:Pinching antennas have emerged as a promising technology for reconfiguring wireless propagation environments, particularly in high-frequency communication systems operating in the millimeter-wave and terahertz bands. By enabling dynamic activation at arbitrary positions along a dielectric waveguide, pinching antennas offer unprecedented channel reconfigurability and the ability to provide line-of-sight (LoS) links in scenarios with severe LoS blockages. The performance of pinching-antenna systems is highly dependent on the optimized placement of the pinching antennas, which must be jointly considered with traditional resource allocation (RA) variables -- including transmission power, time slots, and subcarriers. The resulting joint RA problems are typically non-convex with complex variable coupling, necessitating sophisticated optimization techniques. This article provides a comprehensive survey of existing RA algorithms designed for pinching-antenna systems, supported by numerical case studies that demonstrate their potential performance gains. Key challenges and open research problems are also identified to guide future developments in this emerging field.
Abstract:Recently, a novel flexible-antenna technology, called pinching antennas, has attracted growing academic interest. By inserting discrete dielectric materials, pinching antennas can be activated at arbitrary points along waveguides, allowing for flexible customization of large-scale path loss. This paper investigates a multi-waveguide pinching-antenna integrated sensing and communications (ISAC) system, where transmit pinching antennas (TPAs) and receive pinching antennas (RPAs) coordinate to simultaneously detect one potential target and serve one downlink user. We formulate a communication rate maximization problem subject to radar signal-to-noise ratio (SNR) requirement, transmit power budget, and the allowable movement region of the TPAs, by jointly optimizing TPA locations and transmit beamforming design. To address the non-convexity of the problem, we propose a novel fine-tuning approximation method to reformulate it into a tractable form, followed by a successive convex approximation (SCA)-based algorithm to obtain the solution efficiently. Extensive simulations validate both the system design and the proposed algorithm. Results show that the proposed method achieves near-optimal performance compared with the computational-intensive exhaustive search-based benchmark, and pinching-antenna ISAC systems exhibit a distinct communication-sensing trade-off compared with conventional systems.
Abstract:With the advent of 6G communications, intelligent communication systems face multiple challenges, including constrained perception and response capabilities, limited scalability, and low adaptability in dynamic environments. This tutorial provides a systematic introduction to the principles, design, and applications of Large Artificial Intelligence Models (LAMs) and Agentic AI technologies in intelligent communication systems, aiming to offer researchers a comprehensive overview of cutting-edge technologies and practical guidance. First, we outline the background of 6G communications, review the technological evolution from LAMs to Agentic AI, and clarify the tutorial's motivation and main contributions. Subsequently, we present a comprehensive review of the key components required for constructing LAMs. We further categorize LAMs and analyze their applicability, covering Large Language Models (LLMs), Large Vision Models (LVMs), Large Multimodal Models (LMMs), Large Reasoning Models (LRMs), and lightweight LAMs. Next, we propose a LAM-centric design paradigm tailored for communications, encompassing dataset construction and both internal and external learning approaches. Building upon this, we develop an LAM-based Agentic AI system for intelligent communications, clarifying its core components such as planners, knowledge bases, tools, and memory modules, as well as its interaction mechanisms. We also introduce a multi-agent framework with data retrieval, collaborative planning, and reflective evaluation for 6G. Subsequently, we provide a detailed overview of the applications of LAMs and Agentic AI in communication scenarios. Finally, we summarize the research challenges and future directions in current studies, aiming to support the development of efficient, secure, and sustainable next-generation intelligent communication systems.
Abstract:The pinching-antenna architecture has emerged as a promising solution for reconfiguring wireless propagation environments and enhancing system performance. While prior research has primarily focused on sum-rate maximization or transmit power minimization of pinching-antenna systems, the critical aspect of energy efficiency (EE) has received limited attention. Given the increasing importance of EE in future wireless communication networks, this work investigates EE optimization in a non-orthogonal multiple access (NOMA)-assisted multi-user pinching-antenna uplink system. The problem entails the joint optimization of the users' transmit power and the pinching-antenna position. The resulting optimization problem is non-convex due to tightly coupled variables. To tackle this, we employ an alternating optimization framework to decompose the original problem into two subproblems: one focusing on power allocation and the other on antenna positioning. A low-complexity optimal solution is derived for the power allocation subproblem, while the pinching-antenna positioning subproblem is addressed using a particle swarm optimization algorithm to obtain a high-quality near-optimal solution. Simulation results demonstrate that the proposed scheme significantly outperforms both conventional-antenna configurations and orthogonal multiple access-based pinching-antenna systems in terms of EE.
Abstract:In this paper, we investigate an uplink communication scenario in which multiple users communicate with an access point (AP) employing non-orthogonal multiple access (NOMA). A pinching antenna, which can be activated at an arbitrary point along a dielectric waveguide, is deployed at the AP to dynamically reconfigure user channels. The objective is to maximize the system sum rate by jointly optimizing the pinching-antenna's position and the users' transmit powers. The formulated optimization problem is non-convex, and addressed using the particle swarm optimization (PSO) algorithm. For performance benchmarking, two time division multiple access (TDMA) schemes are considered: one based on the pinching antenna individually activated for each user, and the other based on the single-pinching-antenna configuration serving all users. Numerical results demonstrate that the use of the pinching antenna significantly enhances the system sum rate compared to conventional antenna architectures. Moreover, the NOMA-based scheme outperforms the TDMA-based scheme with a single pinching antenna but is outperformed by the TDMA-based approach when the pinching antenna is adaptively configured for each user. Finally, the proposed PSO-based method is shown to achieve near-optimal performance for both NOMA and TDMA with a common pinching-antenna configuration.
Abstract:Underwater optical wireless technologies offer multiple advantages over the acoustic technology. Acoustic signals, for instance, are susceptible to noise from marine sources due to marine life and human activities. This is not the case with optical signals. However, absorption and scattering significantly attenuate optical signals. This limits the communication range and requires higher transmission power or more sensitive receivers to detect transmitted light. Therefore, it is necessary to design underwater optical systems with a higher transmission rate and reduced attenuation. To this end, we introduce a framework for designing optical signaling constellations employing multi-wavelength light sources to account for the transmission distance and achievable rate. In particular, we redefine the color-shift keying (CSK) constraint region to target blue light and adapt to marine environments. We discuss an example of 4-point underwater CSK. The corresponding analytical results demonstrate the trade-offs between the symbol error probability, achievable rate, and transmission range of the proposed scheme.
Abstract:Beyond Diagonal Reconfigurable Intelligent Surfaces (BD-RIS) represent a groundbreaking innovation in sixth-generation (6G) wireless networks, enabling unprecedented control over wireless propagation environments compared to conventional diagonal RIS (D-RIS). This survey provides a comprehensive analysis of BD-RIS, detailing its architectures, operational principles, and mathematical modeling while highlighting its performance benefits. BD-RIS classifications, including single-connected, fully-connected, and group-connected architectures, and their reflective, transmissive, hybrid, and multi-sector operating modes are examined. Recent advances in BD-RIS-enabled 6G networks are reviewed, focusing on critical areas such as channel estimation, sum-rate and spectral efficiency optimization, energy efficiency enhancement, and security. The survey identifies fundamental challenges in BD-RIS research, including hardware design limitations, adaptive channel estimation, and the impact of non-ideal hardware effects. Future research directions for BD-RIS are proposed, emphasizing the integration of artificial intelligence and machine learning (AI/ML), joint optimization of communication and sensing, and enhanced physical layer security (PLS). This study concludes by underscoring BD-RIS's transformative potential to redefine 6G wireless networks, offering valuable insights and lessons for future research and development.
Abstract:This paper investigates the graph neural network (GNN)-enabled beamforming design for interference channels. We propose a model termed interference channel GNN (ICGNN) to solve a quality-of-service constrained energy efficiency maximization problem. The ICGNN is two-stage, where the direction and power parts of beamforming vectors are learned separately but trained jointly via unsupervised learning. By formulating the dimensionality of features independent of the transceiver pairs, the ICGNN is scalable with the number of transceiver pairs. Besides, to improve the performance of the ICGNN, the hybrid maximum ratio transmission and zero-forcing scheme reduces the output ports, the feature enhancement module unifies the two types of links into one type, the subgraph representation enhances the message passing efficiency, and the multi-head attention and residual connection facilitate the feature extracting. Furthermore, we present the over-the-air distributed implementation of the ICGNN. Ablation studies validate the effectiveness of key components in the ICGNN. Numerical results also demonstrate the capability of ICGNN in achieving near-optimal performance with an average inference time less than 0.1 ms. The scalability of ICGNN for unseen problem sizes is evaluated and enhanced by transfer learning with limited fine-tuning cost. The results of the centralized and distributed implementations of ICGNN are illustrated.
Abstract:Flexible-antenna systems, such as fluid antennas and movable antennas, have been recognized as key enabling technologies for sixth-generation (6G) wireless networks, as they can intelligently reconfigure the effective channel gains of the users and hence significantly improve their data transmission capabilities. However, existing flexible-antenna systems have been designed to combat small-scale fading in non-line-of-sight (NLoS) conditions. As a result, they lack the ability to establish line-of-sight links, which are typically 100 times stronger than NLoS links. In addition, existing flexible-antenna systems have limited flexibility, where adding/removing an antenna is not straightforward. This article introduces an innovative flexible-antenna system called pinching antennas, which are realized by applying small dielectric particles to waveguides. We first describe the basics of pinching-antenna systems and their ability to provide strong LoS links by deploying pinching antennas close to the users as well as their capability to scale up/down the antenna system. We then focus on communication scenarios with different numbers of waveguides and pinching antennas, where innovative approaches to implement multiple-input multiple-output and non-orthogonal multiple access are discussed. In addition, promising 6G-related applications of pinching antennas, including integrated sensing and communication and next-generation multiple access, are presented. Finally, important directions for future research, such as waveguide deployment and channel estimation, are highlighted.
Abstract:For high-speed train (HST) millimeter wave (mmWave) communications, the use of narrow beams with small beam coverage needs frequent beam switching, while wider beams with small beam gain leads to weaker mmWave signal strength. In this paper, we consider beam switching based beam design, which is formulated as an optimization problem aiming to minimize the number of switched beams within a predetermined railway range subject to that the receiving signal-to-noise ratio (RSNR) at the HST is no lower than a predetermined threshold. To solve this problem, we propose two sequential beam design schemes, both including two alternately-performed stages. In the first stage, given an updated beam coverage according to the railway range, we transform the problem into a feasibility problem and further convert it into a min-max optimization problem by relaxing the RSNR constraints into a penalty of the objective function. In the second stage, we evaluate the feasibility of the beamformer obtained from solving the min-max problem and determine the beam coverage accordingly. Simulation results show that compared to the first scheme, the second scheme can achieve 96.20\% reduction in computational complexity at the cost of only 0.0657\% performance degradation.