Abstract:The advancement in large language models (LLMs) and large vision models has fueled the rapid progress in multi-modal visual-text reasoning capabilities. However, existing vision-language models (VLMs) to date suffer from generalization performance. Inspired by recent development in LLMs for visual reasoning, this paper presents VLAgent, an AI system that can create a step-by-step visual reasoning plan with an easy-to-understand script and execute each step of the plan in real time by integrating planning script with execution verifications via an automated process supported by VLAgent. In the task planning phase, VLAgent fine-tunes an LLM through in-context learning to generate a step-by-step planner for each user-submitted text-visual reasoning task. During the plan execution phase, VLAgent progressively refines the composition of neuro-symbolic executable modules to generate high-confidence reasoning results. VLAgent has three unique design characteristics: First, we improve the quality of plan generation through in-context learning, improving logic reasoning by reducing erroneous logic steps, incorrect programs, and LLM hallucinations. Second, we design a syntax-semantics parser to identify and correct additional logic errors of the LLM-generated planning script prior to launching the plan executor. Finally, we employ the ensemble method to improve the generalization performance of our step-executor. Extensive experiments with four visual reasoning benchmarks (GQA, MME, NLVR2, VQAv2) show that VLAgent achieves significant performance enhancement for multimodal text-visual reasoning applications, compared to the exiting representative VLMs and LLM based visual composition approaches like ViperGPT and VisProg, thanks to the novel optimization modules of VLAgent back-engine (SS-Parser, Plan Repairer, Output Verifiers). Code and data will be made available upon paper acceptance.
Abstract:Embodied Chain-of-Thought (ECoT) reasoning enhances vision-language-action (VLA) models by improving performance and interpretability through intermediate reasoning steps. However, its sequential autoregressive token generation introduces significant inference latency, limiting real-time deployment. We propose Fast ECoT, an inference-time acceleration method that exploits the structured and repetitive nature of ECoT to (1) cache and reuse high-level reasoning across timesteps and (2) parallelise the generation of modular reasoning steps. Additionally, we introduce an asynchronous scheduler that decouples reasoning from action decoding, further boosting responsiveness. Fast ECoT requires no model changes or additional training and integrates easily into existing VLA pipelines. Experiments in both simulation (LIBERO) and real-world robot tasks show up to a 7.5% reduction in latency with comparable or improved task success rate and reasoning faithfulness, bringing ECoT policies closer to practical real-time deployment.
Abstract:Large language models (LLMs) have demonstrated strong performance in various robot control tasks. However, their deployment in real-world applications remains constrained. Even state-ofthe-art LLMs, such as GPT-o4mini, frequently produce invalid action plans that violate physical constraints, such as directing a robot to an unreachable location or causing collisions between robots. This issue primarily arises from a lack of awareness of these physical constraints during the reasoning process. To address this issue, we propose a novel framework that integrates reinforcement learning with verifiable rewards (RLVR) to incentivize knowledge of physical constraints into LLMs to induce constraints-aware reasoning during plan generation. In this approach, only valid action plans that successfully complete a control task receive positive rewards. We applied our method to two small-scale LLMs: a non-reasoning Qwen2.5-3B-Instruct and a reasoning Qwen3-4B. The experiment results demonstrate that constraint-aware small LLMs largely outperform large-scale models without constraints, grounded on both the BoxNet task and a newly developed BoxNet3D environment built using MuJoCo. This work highlights the effectiveness of grounding even small LLMs with physical constraints to enable scalable and efficient multi-robot control in complex, physically constrained environments.
Abstract:Dataset distillation has emerged as an effective strategy, significantly reducing training costs and facilitating more efficient model deployment. Recent advances have leveraged generative models to distill datasets by capturing the underlying data distribution. Unfortunately, existing methods require model fine-tuning with distillation losses to encourage diversity and representativeness. However, these methods do not guarantee sample diversity, limiting their performance. We propose a mode-guided diffusion model leveraging a pre-trained diffusion model without the need to fine-tune with distillation losses. Our approach addresses dataset diversity in three stages: Mode Discovery to identify distinct data modes, Mode Guidance to enhance intra-class diversity, and Stop Guidance to mitigate artifacts in synthetic samples that affect performance. Our approach outperforms state-of-the-art methods, achieving accuracy gains of 4.4%, 2.9%, 1.6%, and 1.6% on ImageNette, ImageIDC, ImageNet-100, and ImageNet-1K, respectively. Our method eliminates the need for fine-tuning diffusion models with distillation losses, significantly reducing computational costs. Our code is available on the project webpage: https://jachansantiago.github.io/mode-guided-distillation/
Abstract:Large Reasoning Models (LRMs) introduce a new generation paradigm of explicitly reasoning before answering, leading to remarkable improvements in complex tasks. However, they pose great safety risks against harmful queries and adversarial attacks. While recent mainstream safety efforts on LRMs, supervised fine-tuning (SFT), improve safety performance, we find that SFT-aligned models struggle to generalize to unseen jailbreak prompts. After thorough investigation of LRMs' generation, we identify a safety aha moment that can activate safety reasoning and lead to a safe response. This aha moment typically appears in the `key sentence', which follows models' query understanding process and can indicate whether the model will proceed safely. Based on these insights, we propose SafeKey, including two complementary objectives to better activate the safety aha moment in the key sentence: (1) a Dual-Path Safety Head to enhance the safety signal in the model's internal representations before the key sentence, and (2) a Query-Mask Modeling objective to improve the models' attention on its query understanding, which has important safety hints. Experiments across multiple safety benchmarks demonstrate that our methods significantly improve safety generalization to a wide range of jailbreak attacks and out-of-distribution harmful prompts, lowering the average harmfulness rate by 9.6\%, while maintaining general abilities. Our analysis reveals how SafeKey enhances safety by reshaping internal attention and improving the quality of hidden representations.
Abstract:We introduce Infinigen-Sim, a toolkit which enables users to create diverse and realistic articulated object procedural generators. These tools are composed of high-level utilities for use creating articulated assets in Blender, as well as an export pipeline to integrate the resulting assets into common robotics simulators. We demonstrate our system by creating procedural generators for 5 common articulated object categories. Experiments show that assets sampled from these generators are useful for movable object segmentation, training generalizable reinforcement learning policies, and sim-to-real transfer of imitation learning policies.
Abstract:Despite significant advances in large language models (LLMs), their knowledge memorization capabilities remain underexplored, due to the lack of standardized and high-quality test ground. In this paper, we introduce a novel, real-world and large-scale knowledge injection benchmark that evolves continuously over time without requiring human intervention. Specifically, we propose WikiDYK, which leverages recently-added and human-written facts from Wikipedia's "Did You Know..." entries. These entries are carefully selected by expert Wikipedia editors based on criteria such as verifiability and clarity. Each entry is converted into multiple question-answer pairs spanning diverse task formats from easy cloze prompts to complex multi-hop questions. WikiDYK contains 12,290 facts and 77,180 questions, which is also seamlessly extensible with future updates from Wikipedia editors. Extensive experiments using continued pre-training reveal a surprising insight: despite their prevalence in modern LLMs, Causal Language Models (CLMs) demonstrate significantly weaker knowledge memorization capabilities compared to Bidirectional Language Models (BiLMs), exhibiting a 23% lower accuracy in terms of reliability. To compensate for the smaller scales of current BiLMs, we introduce a modular collaborative framework utilizing ensembles of BiLMs as external knowledge repositories to integrate with LLMs. Experiment shows that our framework further improves the reliability accuracy by up to 29.1%.
Abstract:To survive and thrive in complex environments, humans have evolved sophisticated self-improvement mechanisms through environment exploration, hierarchical abstraction of experiences into reuseable skills, and collaborative construction of an ever-growing skill repertoire. Despite recent advancements, autonomous web agents still lack crucial self-improvement capabilities, struggling with procedural knowledge abstraction, refining skills, and skill composition. In this work, we introduce SkillWeaver, a skill-centric framework enabling agents to self-improve by autonomously synthesizing reusable skills as APIs. Given a new website, the agent autonomously discovers skills, executes them for practice, and distills practice experiences into robust APIs. Iterative exploration continually expands a library of lightweight, plug-and-play APIs, significantly enhancing the agent's capabilities. Experiments on WebArena and real-world websites demonstrate the efficacy of SkillWeaver, achieving relative success rate improvements of 31.8% and 39.8%, respectively. Additionally, APIs synthesized by strong agents substantially enhance weaker agents through transferable skills, yielding improvements of up to 54.3% on WebArena. These results demonstrate the effectiveness of honing diverse website interactions into APIs, which can be seamlessly shared among various web agents.
Abstract:Conditional diffusion models have gained increasing attention since their impressive results for cross-modal synthesis, where the strong alignment between conditioning input and generated output can be achieved by training a time-conditioned U-Net augmented with cross-attention mechanism. In this paper, we focus on the problem of generating music synchronized with rhythmic visual cues of the given dance video. Considering that bi-directional guidance is more beneficial for training a diffusion model, we propose to enhance the quality of generated music and its synchronization with dance videos by adopting both positive rhythmic information and negative ones (PN-Diffusion) as conditions, where a dual diffusion and reverse processes is devised. Specifically, to train a sequential multi-modal U-Net structure, PN-Diffusion consists of a noise prediction objective for positive conditioning and an additional noise prediction objective for negative conditioning. To accurately define and select both positive and negative conditioning, we ingeniously utilize temporal correlations in dance videos, capturing positive and negative rhythmic cues by playing them forward and backward, respectively. Through subjective and objective evaluations of input-output correspondence in terms of dance-music beat alignment and the quality of generated music, experimental results on the AIST++ and TikTok dance video datasets demonstrate that our model outperforms SOTA dance-to-music generation models.
Abstract:Attribute detection is crucial for many computer vision tasks, as it enables systems to describe properties such as color, texture, and material. Current approaches often rely on labor-intensive annotation processes which are inherently limited: objects can be described at an arbitrary level of detail (e.g., color vs. color shades), leading to ambiguities when the annotators are not instructed carefully. Furthermore, they operate within a predefined set of attributes, reducing scalability and adaptability to unforeseen downstream applications. We present Compositional Caching (ComCa), a training-free method for open-vocabulary attribute detection that overcomes these constraints. ComCa requires only the list of target attributes and objects as input, using them to populate an auxiliary cache of images by leveraging web-scale databases and Large Language Models to determine attribute-object compatibility. To account for the compositional nature of attributes, cache images receive soft attribute labels. Those are aggregated at inference time based on the similarity between the input and cache images, refining the predictions of underlying Vision-Language Models (VLMs). Importantly, our approach is model-agnostic, compatible with various VLMs. Experiments on public datasets demonstrate that ComCa significantly outperforms zero-shot and cache-based baselines, competing with recent training-based methods, proving that a carefully designed training-free approach can successfully address open-vocabulary attribute detection.