Abstract:Role-playing (RP) agents rely on behavioral profiles to act consistently across diverse narrative contexts, yet existing profiles are largely unstructured, non-executable, and weakly validated, leading to brittle agent behavior. We propose Codified Decision Trees (CDT), a data-driven framework that induces an executable and interpretable decision structure from large-scale narrative data. CDT represents behavioral profiles as a tree of conditional rules, where internal nodes correspond to validated scene conditions and leaves encode grounded behavioral statements, enabling deterministic retrieval of context-appropriate rules at execution time. The tree is learned by iteratively inducing candidate scene-action rules, validating them against data, and refining them through hierarchical specialization, yielding profiles that support transparent inspection and principled updates. Across multiple benchmarks, CDT substantially outperforms human-written profiles and prior profile induction methods on $85$ characters across $16$ artifacts, indicating that codified and validated behavioral representations lead to more reliable agent grounding.
Abstract:Foreshadowing and payoff are ubiquitous narrative devices through which authors introduce commitments early in a story and resolve them through concrete, observable outcomes. However, despite advances in story generation, large language models (LLMs) frequently fail to bridge these long-range narrative dependencies, often leaving "Chekhov's guns" unfired even when the necessary context is present. Existing evaluations largely overlook this structural failure, focusing on surface-level coherence rather than the logical fulfillment of narrative setups. In this paper, we introduce Codified Foreshadowing-Payoff Generation (CFPG), a novel framework that reframes narrative quality through the lens of payoff realization. Recognizing that LLMs struggle to intuitively grasp the "triggering mechanism" of a foreshadowed event, CFPG transforms narrative continuity into a set of executable causal predicates. By mining and encoding Foreshadow-Trigger-Payoff triples from the BookSum corpus, we provide structured supervision that ensures foreshadowed commitments are not only mentioned but also temporally and logically fulfilled. Experiments demonstrate that CFPG significantly outperforms standard prompting baselines in payoff accuracy and narrative alignment. Our findings suggest that explicitly codifying narrative mechanics is essential for moving LLMs from surface-level fluency to genuine narrative competence.
Abstract:Tool-using LLM agents still struggle in open-world settings with large tool pools, long-horizon objectives, wild constraints, and unreliable tool states. For scalable and realistic training and testing, we introduce an open-world tool-using environment, built on 5,571 format unified tools across 204 commonly used apps. It includes a task creation engine that synthesizes long-horizon, multi-tool workflows with wild constraints, and a state controller that injects interruptions and failures to stress-test robustness. On top of this environment, we develop a tool select-then-execute agent framework with a planner-actor decomposition to separate deliberate reasoning and self-correction from step-wise execution. Comprehensive evaluation of state-of-the-art LLMs reveals the misalignment between tool planning and execution abilities, the constraint following weakness of existing LLMs, and DeepSeek-v3.2's strongest robustness. Finally, we collect 1,170 trajectories from our environment to fine-tune LLMs, achieving superior performance to baselines using 119k samples, indicating the environment's value as both a realistic benchmark and a data engine for tool-using agents. Our code and data will be publicly released.
Abstract:At the core of Deep Research is knowledge mining, the task of extracting structured information from massive unstructured text in response to user instructions. Large language models (LLMs) excel at interpreting such instructions but are prohibitively expensive to deploy at scale, while traditional pipelines of classifiers and extractors remain efficient yet brittle and unable to generalize to new tasks. We introduce Falconer, a collaborative framework that combines the agentic reasoning of LLMs with lightweight proxy models for scalable knowledge mining. In Falconer, LLMs act as planners, decomposing user instructions into executable pipelines, and as annotators, generating supervision to train small proxies. The framework unifies classification and extraction into two atomic operations, get label and get span, enabling a single instruction-following model to replace multiple task-specific components. To evaluate the consistency between proxy models incubated by Falconer and annotations provided by humans and large models, we construct new benchmarks covering both planning and end-to-end execution. Experiments show that Falconer closely matches state-of-the-art LLMs in instruction-following accuracy while reducing inference cost by up to 90% and accelerating large-scale knowledge mining by more than 20x, offering an efficient and scalable foundation for Deep Research.




Abstract:Instruction-tuned large language models (LLMs) employ structured templates, such as role markers and special tokens, to enforce format consistency during inference. However, we identify a critical limitation of such formatting: it induces a phenomenon we term diversity collapse, where the model generates semantically similar outputs for open-ended inputs, undermining creativity and variability. We systematically evaluate this effect across tasks like story completion and free-form generation, finding that (1) diversity collapse persists even under high-temperature sampling, and (2) structural tokens in templates significantly constrain the model's output space. To contextualize these findings, we fine-tune the same model using a range of structured prompts and then evaluate them across three axes: downstream task performance, alignment behavior, and output diversity. Our analysis shows that format consistency between fine-tuning and inference is crucial for structure-sensitive tasks (e.g., GSM8K, IFEval), but has marginal influence on knowledge-heavy tasks (e.g., MMLU, WebQuestions). In contrast, output diversity is primarily governed by the presence or absence of structural tokens, with minimal formatting yielding the most diverse outputs. These findings reveal that current prompting conventions, while beneficial for alignment, may inadvertently suppress output diversity, underscoring the need for diversity-aware prompt design and instruction tuning.
Abstract:Despite significant advances in large language models (LLMs), their knowledge memorization capabilities remain underexplored, due to the lack of standardized and high-quality test ground. In this paper, we introduce a novel, real-world and large-scale knowledge injection benchmark that evolves continuously over time without requiring human intervention. Specifically, we propose WikiDYK, which leverages recently-added and human-written facts from Wikipedia's "Did You Know..." entries. These entries are carefully selected by expert Wikipedia editors based on criteria such as verifiability and clarity. Each entry is converted into multiple question-answer pairs spanning diverse task formats from easy cloze prompts to complex multi-hop questions. WikiDYK contains 12,290 facts and 77,180 questions, which is also seamlessly extensible with future updates from Wikipedia editors. Extensive experiments using continued pre-training reveal a surprising insight: despite their prevalence in modern LLMs, Causal Language Models (CLMs) demonstrate significantly weaker knowledge memorization capabilities compared to Bidirectional Language Models (BiLMs), exhibiting a 23% lower accuracy in terms of reliability. To compensate for the smaller scales of current BiLMs, we introduce a modular collaborative framework utilizing ensembles of BiLMs as external knowledge repositories to integrate with LLMs. Experiment shows that our framework further improves the reliability accuracy by up to 29.1%.
Abstract:This paper introduces Codified Profiles for role-playing, a novel approach that represents character logic as structured, executable functions for behavioral decision-making. Each profile defines a set of functions parse_by_scene(scene) that outputs a list of logic-grounded assertions triggered_statements, using both explicit control structures (e.g., if-then-else) and condition checks like check_condition(scene, question), where each question is a semantically meaningful prompt about the scene (e.g., "Is the character in danger?") discriminated by the role-playing LLM as true, false, or unknown. This explicit representation offers three key advantages over traditional prompt-based profiles, which append character descriptions directly into text prompts: (1) Persistence, by enforcing complete and consistent execution of character logic, rather than relying on the model's implicit reasoning; (2) Updatability, through systematic inspection and revision of behavioral logic, which is difficult to track or debug in prompt-only approaches; (3) Controllable Randomness, by supporting stochastic behavior directly within the logic, enabling fine-grained variability that prompting alone struggles to achieve. To validate these advantages, we introduce a new benchmark constructed from 83 characters and 5,141 scenes curated from Fandom, using NLI-based scoring to compare character responses against ground-truth actions. Our experiments demonstrate the significant benefits of codified profiles in improving persistence, updatability, and behavioral diversity. Notably, by offloading a significant portion of reasoning to preprocessing, codified profiles enable even 1B-parameter models to perform high-quality role-playing, providing a scalable and efficient foundation for local deployment of role-play agents.
Abstract:Large Language Models (LLMs) are known to exhibit a memorization phenomenon in code generation: instead of truly understanding the underlying principles of a programming problem, they tend to memorize the original prompt and its solution together in the training. Consequently, when facing variants of the original problem, their answers very likely resemble the memorized solutions and fail to generalize. In this paper, we investigate this phenomenon by designing three evolution strategies to create variants: mutation, paraphrasing, and code-rewriting. By comparing the performance and AST similarity of the LLM-generated codes before and after these three evolutions, we develop a memorization score that positively correlates with the level of memorization. As expected, as supervised fine-tuning goes on, the memorization score rises before overfitting, suggesting more severe memorization. We demonstrate that common mitigation approaches, such as prompt translation and using evolved variants as data augmentation in supervised learning and reinforcement learning, either compromise the performance or fail to alleviate the memorization issue. Therefore, memorization remains a significant challenge in LLM code generation, highlighting the need for a more effective solution.
Abstract:Fine granularity is an essential requirement for controllable text generation, which has seen rapid growth with the ability of LLMs. However, existing methods focus mainly on a small set of attributes like 3 to 5, and their performance degrades significantly when the number of attributes increases to the next order of magnitude. To address this challenge, we propose a novel zero-shot approach for extremely fine-grained controllable generation (EFCG), proposing auto-reconstruction (AR) and global preference optimization (GPO). In the AR phase, we leverage LLMs to extract soft attributes (e.g., Emphasis on simplicity and minimalism in design) from raw texts, and combine them with programmatically derived hard attributes (e.g., The text should be between 300 and 400 words) to construct massive (around 45) multi-attribute requirements, which guide the fine-grained text reconstruction process under weak supervision. In the GPO phase, we apply direct preference optimization (DPO) to refine text generation under diverse attribute combinations, enabling efficient exploration of the global combination space. Additionally, we introduce an efficient attribute sampling strategy to identify and correct potentially erroneous attributes, further improving global optimization. Our framework significantly improves the constraint satisfaction rate (CSR) and text quality for EFCG by mitigating position bias and alleviating attention dilution.




Abstract:The generalization of language models (LMs) is undergoing active debates, contrasting their potential for general intelligence with their struggles with basic knowledge composition (e.g., reverse/transition curse). This paper uncovers the phenomenon of linear correlations in LMs during knowledge composition. For explanation, there exists a linear transformation between certain related knowledge that maps the next token prediction logits from one prompt to another, e.g., "X lives in the city of" $\rightarrow$ "X lives in the country of" for every given X. This mirrors the linearity in human knowledge composition, such as Paris $\rightarrow$ France. Our findings indicate that the linear transformation is resilient to large-scale fine-tuning, generalizing updated knowledge when aligned with real-world relationships, but causing hallucinations when it deviates. Empirical results suggest that linear correlation can serve as a potential identifier of LM's generalization. Finally, we show such linear correlations can be learned with a single feedforward network and pre-trained vocabulary representations, indicating LM generalization heavily relies on the latter.