Abstract:Large language model-based agents are rapidly evolving from simple conversational assistants into autonomous systems capable of performing complex, professional-level tasks in various domains. While these advancements promise significant productivity gains, they also introduce critical safety risks that remain under-explored. Existing safety evaluations primarily focus on simple, daily assistance tasks, failing to capture the intricate decision-making processes and potential consequences of misaligned behaviors in professional settings. To address this gap, we introduce \textbf{SafePro}, a comprehensive benchmark designed to evaluate the safety alignment of AI agents performing professional activities. SafePro features a dataset of high-complexity tasks across diverse professional domains with safety risks, developed through a rigorous iterative creation and review process. Our evaluation of state-of-the-art AI models reveals significant safety vulnerabilities and uncovers new unsafe behaviors in professional contexts. We further show that these models exhibit both insufficient safety judgment and weak safety alignment when executing complex professional tasks. In addition, we investigate safety mitigation strategies for improving agent safety in these scenarios and observe encouraging improvements. Together, our findings highlight the urgent need for robust safety mechanisms tailored to the next generation of professional AI agents.
Abstract:Vision-Language Tracking aims to continuously localize objects described by a visual template and a language description. Existing methods, however, are typically limited to local search, making them prone to failures under viewpoint changes, occlusions, and rapid target movements. In this work, we introduce the first global tracking framework based on Multimodal Large Language Models (VPTracker), exploiting their powerful semantic reasoning to locate targets across the entire image space. While global search improves robustness and reduces drift, it also introduces distractions from visually or semantically similar objects. To address this, we propose a location-aware visual prompting mechanism that incorporates spatial priors into the MLLM. Specifically, we construct a region-level prompt based on the target's previous location, enabling the model to prioritize region-level recognition and resort to global inference only when necessary. This design retains the advantages of global tracking while effectively suppressing interference from distracting visual content. Extensive experiments show that our approach significantly enhances tracking stability and target disambiguation under challenging scenarios, opening a new avenue for integrating MLLMs into visual tracking. Code is available at https://github.com/jcwang0602/VPTracker.




Abstract:Vision-Language-Action (VLA) models have advanced in robotic manipulation, yet practical deployment remains hindered by two key limitations: 1) perceptual redundancy, where irrelevant visual inputs are processed inefficiently, and 2) superficial instruction-vision alignment, which hampers semantic grounding of actions. In this paper, we propose SemanticVLA, a novel VLA framework that performs Semantic-Aligned Sparsification and Enhancement for Efficient Robotic Manipulation. Specifically: 1) To sparsify redundant perception while preserving semantic alignment, Semantic-guided Dual Visual Pruner (SD-Pruner) performs: Instruction-driven Pruner (ID-Pruner) extracts global action cues and local semantic anchors in SigLIP; Spatial-aggregation Pruner (SA-Pruner) compacts geometry-rich features into task-adaptive tokens in DINOv2. 2) To exploit sparsified features and integrate semantics with spatial geometry, Semantic-complementary Hierarchical Fuser (SH-Fuser) fuses dense patches and sparse tokens across SigLIP and DINOv2 for coherent representation. 3) To enhance the transformation from perception to action, Semantic-conditioned Action Coupler (SA-Coupler) replaces the conventional observation-to-DoF approach, yielding more efficient and interpretable behavior modeling for manipulation tasks. Extensive experiments on simulation and real-world tasks show that SemanticVLA sets a new SOTA in both performance and efficiency. SemanticVLA surpasses OpenVLA on LIBERO benchmark by 21.1% in success rate, while reducing training cost and inference latency by 3.0-fold and 2.7-fold.SemanticVLA is open-sourced and publicly available at https://github.com/JiuTian-VL/SemanticVLA
Abstract:The ability of LLM agents to plan and invoke tools exposes them to new safety risks, making a comprehensive red-teaming system crucial for discovering vulnerabilities and ensuring their safe deployment. We present SIRAJ: a generic red-teaming framework for arbitrary black-box LLM agents. We employ a dynamic two-step process that starts with an agent definition and generates diverse seed test cases that cover various risk outcomes, tool-use trajectories, and risk sources. Then, it iteratively constructs and refines model-based adversarial attacks based on the execution trajectories of former attempts. To optimize the red-teaming cost, we present a model distillation approach that leverages structured forms of a teacher model's reasoning to train smaller models that are equally effective. Across diverse evaluation agent settings, our seed test case generation approach yields 2 -- 2.5x boost to the coverage of risk outcomes and tool-calling trajectories. Our distilled 8B red-teamer model improves attack success rate by 100%, surpassing the 671B Deepseek-R1 model. Our ablations and analyses validate the effectiveness of the iterative framework, structured reasoning, and the generalization of our red-teamer models.
Abstract:Large Video Models (LVMs) build on the semantic capabilities of Large Language Models (LLMs) and vision modules by integrating temporal information to better understand dynamic video content. Despite their progress, LVMs are prone to hallucinations-producing inaccurate or irrelevant descriptions. Current benchmarks for video hallucination depend heavily on manual categorization of video content, neglecting the perception-based processes through which humans naturally interpret videos. We introduce MESH, a benchmark designed to evaluate hallucinations in LVMs systematically. MESH uses a Question-Answering framework with binary and multi-choice formats incorporating target and trap instances. It follows a bottom-up approach, evaluating basic objects, coarse-to-fine subject features, and subject-action pairs, aligning with human video understanding. We demonstrate that MESH offers an effective and comprehensive approach for identifying hallucinations in videos. Our evaluations show that while LVMs excel at recognizing basic objects and features, their susceptibility to hallucinations increases markedly when handling fine details or aligning multiple actions involving various subjects in longer videos.
Abstract:Graphical user interface (GUI) agents have shown promise in automating mobile tasks but still struggle with input redundancy and decision ambiguity. In this paper, we present \textbf{RecAgent}, an uncertainty-aware agent that addresses these issues through adaptive perception. We distinguish two types of uncertainty in GUI navigation: (1) perceptual uncertainty, caused by input redundancy and noise from comprehensive screen information, and (2) decision uncertainty, arising from ambiguous tasks and complex reasoning. To reduce perceptual uncertainty, RecAgent employs a component recommendation mechanism that identifies and focuses on the most relevant UI elements. For decision uncertainty, it uses an interactive module to request user feedback in ambiguous situations, enabling intent-aware decisions. These components are integrated into a unified framework that proactively reduces input complexity and reacts to high-uncertainty cases via human-in-the-loop refinement. Additionally, we propose a dataset called \textbf{ComplexAction} to evaluate the success rate of GUI agents in executing specified single-step actions within complex scenarios. Extensive experiments validate the effectiveness of our approach. The dataset and code will be available at https://github.com/Fanye12/RecAgent.
Abstract:Video generation models have achieved remarkable progress in creating high-quality, photorealistic content. However, their ability to accurately simulate physical phenomena remains a critical and unresolved challenge. This paper presents PhyWorldBench, a comprehensive benchmark designed to evaluate video generation models based on their adherence to the laws of physics. The benchmark covers multiple levels of physical phenomena, ranging from fundamental principles like object motion and energy conservation to more complex scenarios involving rigid body interactions and human or animal motion. Additionally, we introduce a novel ""Anti-Physics"" category, where prompts intentionally violate real-world physics, enabling the assessment of whether models can follow such instructions while maintaining logical consistency. Besides large-scale human evaluation, we also design a simple yet effective method that could utilize current MLLM to evaluate the physics realism in a zero-shot fashion. We evaluate 12 state-of-the-art text-to-video generation models, including five open-source and five proprietary models, with a detailed comparison and analysis. we identify pivotal challenges models face in adhering to real-world physics. Through systematic testing of their outputs across 1,050 curated prompts-spanning fundamental, composite, and anti-physics scenarios-we identify pivotal challenges these models face in adhering to real-world physics. We then rigorously examine their performance on diverse physical phenomena with varying prompt types, deriving targeted recommendations for crafting prompts that enhance fidelity to physical principles.




Abstract:Recent efforts to leverage the Multi-modal Large Language Model (MLLM) as GUI agents have yielded promising outcomes. However, these agents still struggle with long-horizon tasks in online environments, primarily due to insufficient knowledge and the inherent gap between offline and online domains. In this paper, inspired by how humans generalize knowledge in open-ended environments, we propose a Hierarchical Multimodal Skills (HMS) module to tackle the issue of insufficient knowledge. It progressively abstracts trajectories into execution skills, core skills, and ultimately meta-skills, providing a hierarchical knowledge structure for long-horizon task planning. To bridge the domain gap, we propose the Skill-Augmented Monte Carlo Tree Search (SA-MCTS) algorithm, which efficiently leverages skills acquired in offline environments to reduce the action search space during online tree exploration. Building on HMS, we propose Mirage-1, a multimodal, cross-platform, plug-and-play GUI agent. To validate the performance of Mirage-1 in real-world long-horizon scenarios, we constructed a new benchmark, AndroidLH. Experimental results show that Mirage-1 outperforms previous agents by 32\%, 19\%, 15\%, and 79\% on AndroidWorld, MobileMiniWob++, Mind2Web-Live, and AndroidLH, respectively. Project page: https://cybertronagent.github.io/Mirage-1.github.io/




Abstract:Large Reasoning Models (LRMs) introduce a new generation paradigm of explicitly reasoning before answering, leading to remarkable improvements in complex tasks. However, they pose great safety risks against harmful queries and adversarial attacks. While recent mainstream safety efforts on LRMs, supervised fine-tuning (SFT), improve safety performance, we find that SFT-aligned models struggle to generalize to unseen jailbreak prompts. After thorough investigation of LRMs' generation, we identify a safety aha moment that can activate safety reasoning and lead to a safe response. This aha moment typically appears in the `key sentence', which follows models' query understanding process and can indicate whether the model will proceed safely. Based on these insights, we propose SafeKey, including two complementary objectives to better activate the safety aha moment in the key sentence: (1) a Dual-Path Safety Head to enhance the safety signal in the model's internal representations before the key sentence, and (2) a Query-Mask Modeling objective to improve the models' attention on its query understanding, which has important safety hints. Experiments across multiple safety benchmarks demonstrate that our methods significantly improve safety generalization to a wide range of jailbreak attacks and out-of-distribution harmful prompts, lowering the average harmfulness rate by 9.6\%, while maintaining general abilities. Our analysis reveals how SafeKey enhances safety by reshaping internal attention and improving the quality of hidden representations.
Abstract:GUI automation faces critical challenges in dynamic environments. MLLMs suffer from two key issues: misinterpreting UI components and outdated knowledge. Traditional fine-tuning methods are costly for app-specific knowledge updates. We propose GUI-explorer, a training-free GUI agent that incorporates two fundamental mechanisms: (1) Autonomous Exploration of Function-aware Trajectory. To comprehensively cover all application functionalities, we design a Function-aware Task Goal Generator that automatically constructs exploration goals by analyzing GUI structural information (e.g., screenshots and activity hierarchies). This enables systematic exploration to collect diverse trajectories. (2) Unsupervised Mining of Transition-aware Knowledge. To establish precise screen-operation logic, we develop a Transition-aware Knowledge Extractor that extracts effective screen-operation logic through unsupervised analysis the state transition of structured interaction triples (observation, action, outcome). This eliminates the need for human involvement in knowledge extraction. With a task success rate of 53.7% on SPA-Bench and 47.4% on AndroidWorld, GUI-explorer shows significant improvements over SOTA agents. It requires no parameter updates for new apps. GUI-explorer is open-sourced and publicly available at https://github.com/JiuTian-VL/GUI-explorer.