Get our free extension to see links to code for papers anywhere online!Free extension: code links for papers anywhere!Free add-on: See code for papers anywhere!

Di Wang, Xiaoyu Duan, Shu-Hao Yeh, Jun Zou, Dezhen Song

We report a new calibration system and algorithm design for micro scanning mirrors (MSMs) which are an important component in many active sensors used in robotic applications. In fact, our MSM is a 3 degree-of-freedom soft-hinged robot with a triaxial Hall sensor as feedback. Our calibration rig design employs a minimal 2-laser beam approach and the new algorithm builds on reflection principle to precisely measure MSM poses. To establish the mapping between Hall sensor readings and MSM poses, we propose a self-synchronizing periodicity-based model fitting calibration approach. We achieve an MSM poses estimation accuracy of 0.020{\deg} with a standard deviation of 0.011{\deg}.

Via

Cheng Fang, Di Wang, Fengzhi Guo, Jun Zou, Dezhen Song

To enhance robotic grasping capabilities, we are developing new contactless fingertip sensors to measure distance in close proximity and simultaneously detect the type of material and the interior structure. These sensors are referred to as pre-touch dual-modal and dual-mechanism (PDM$^2$) sensors, and they operate using both pulse-echo ultrasound (US) and optoacoustic (OA) modalities. We present the design of a PDM$^2$ sensor that utilizes a pulsed laser beam and a customized ultrasound transceiver with a wide acoustic bandwidth for ranging and sensing. Both US and OA signals are collected simultaneously, triggered by the same laser pulse. To validate our design, we have fabricated a prototype of the PDM$^2$ sensor and integrated it into an object scanning system. We have also developed algorithms to enable the sensor, including time-of-flight (ToF) auto estimation, ranging rectification, sensor and system calibration, distance ranging, material/structure detection, and object contour detection and reconstruction. The experimental results demonstrate that the new PDM$^2$ sensor and its algorithms effectively enable the object scanning system to achieve satisfactory ranging and contour reconstruction performances, along with satisfying material/structure detection capabilities. In conclusion, the PDM$^2$ sensor offers a practical and powerful solution to improve grasping of unknown objects with the robotic gripper by providing advanced perception capabilities.

Via

Zihang Xiang, Tianhao Wang, Di Wang

Differential privacy (DP) has seen immense applications in learning on tabular, image, and sequential data where instance-level privacy is concerned. In learning on graphs, contrastingly, works on node-level privacy are highly sparse. Challenges arise as existing DP protocols hardly apply to the message-passing mechanism in Graph Neural Networks (GNNs). In this study, we propose a solution that specifically addresses the issue of node-level privacy. Our protocol consists of two main components: 1) a sampling routine called HeterPoisson, which employs a specialized node sampling strategy and a series of tailored operations to generate a batch of sub-graphs with desired properties, and 2) a randomization routine that utilizes symmetric multivariate Laplace (SML) noise instead of the commonly used Gaussian noise. Our privacy accounting shows this particular combination provides a non-trivial privacy guarantee. In addition, our protocol enables GNN learning with good performance, as demonstrated by experiments on five real-world datasets; compared with existing baselines, our method shows significant advantages, especially in the high privacy regime. Experimentally, we also 1) perform membership inference attacks against our protocol and 2) apply privacy audit techniques to confirm our protocol's privacy integrity. In the sequel, we present a study on a seemingly appealing approach \cite{sajadmanesh2023gap} (USENIX'23) that protects node-level privacy via differentially private node/instance embeddings. Unfortunately, such work has fundamental privacy flaws, which are identified through a thorough case study. More importantly, we prove an impossibility result of achieving both (strong) privacy and (acceptable) utility through private instance embedding. The implication is that such an approach has intrinsic utility barriers when enforcing differential privacy.

Via

Shao-Bo Lin, Xingping Sun, Di Wang

For radial basis function (RBF) kernel interpolation of scattered data, Schaback in 1995 proved that the attainable approximation error and the condition number of the underlying interpolation matrix cannot be made small simultaneously. He referred to this finding as an "uncertainty relation", an undesirable consequence of which is that RBF kernel interpolation is susceptible to noisy data. In this paper, we propose and study a distributed interpolation method to manage and quantify the uncertainty brought on by interpolating noisy spherical data of non-negligible magnitude. We also present numerical simulation results showing that our method is practical and robust in terms of handling noisy data from challenging computing environments.

Via

Muhammad Asif Ali, Maha Alshmrani, Jianbin Qin, Yan Hu, Di Wang

Bilingual Lexical Induction (BLI) is a core challenge in NLP, it relies on the relative isomorphism of individual embedding spaces. Existing attempts aimed at controlling the relative isomorphism of different embedding spaces fail to incorporate the impact of semantically related words in the model training objective. To address this, we propose GARI that combines the distributional training objectives with multiple isomorphism losses guided by the graph attention network. GARI considers the impact of semantical variations of words in order to define the relative isomorphism of the embedding spaces. Experimental evaluation using the Arabic language data set shows that GARI outperforms the existing research by improving the average P@1 by a relative score of up to 40.95% and 76.80% for in-domain and domain mismatch settings respectively. We release the codes for GARI at https://github.com/asif6827/GARI.

Via

Muhammad Asif Ali, Yan Hu, Jianbin Qin, Di Wang

Automated construction of bilingual dictionaries using monolingual embedding spaces is a core challenge in machine translation. The end performance of these dictionaries relies upon the geometric similarity of individual spaces, i.e., their degree of isomorphism. Existing attempts aimed at controlling the relative isomorphism of different spaces fail to incorporate the impact of semantically related words in the training objective. To address this, we propose GRI that combines the distributional training objectives with attentive graph convolutions to unanimously consider the impact of semantically similar words required to define/compute the relative isomorphism of multiple spaces. Experimental evaluation shows that GRI outperforms the existing research by improving the average P@1 by a relative score of up to 63.6%. We release the codes for GRI at https://github.com/asif6827/GRI.

Via

Hongjun Wu, Di Wang

The worst-case resource usage of a program can provide useful information for many software-engineering tasks, such as performance optimization and algorithmic-complexity-vulnerability discovery. This paper presents a generic, adaptive, and sound fuzzing framework, called DSE-SMC, for estimating worst-case resource usage. DSE-SMC is generic because it is black-box as long as the user provides an interface for retrieving resource-usage information on a given input; adaptive because it automatically balances between exploration and exploitation of candidate inputs; and sound because it is guaranteed to converge to the true resource-usage distribution of the analyzed program. DSE-SMC is built upon a key observation: resource accumulation in a program is isomorphic to the soft-conditioning mechanism in Bayesian probabilistic programming; thus, worst-case resource analysis is isomorphic to the maximum-a-posteriori-estimation problem of Bayesian statistics. DSE-SMC incorporates sequential Monte Carlo (SMC) -- a generic framework for Bayesian inference -- with adaptive evolutionary fuzzing algorithms, in a sound manner, i.e., DSE-SMC asymptotically converges to the posterior distribution induced by resource-usage behavior of the analyzed program. Experimental evaluation on Java applications demonstrates that DSE-SMC is significantly more effective than existing black-box fuzzing methods for worst-case analysis.

Via

Hanpu Shen, Cheng-Long Wang, Zihang Xiang, Yiming Ying, Di Wang

This paper focuses on the problem of Differentially Private Stochastic Optimization for (multi-layer) fully connected neural networks with a single output node. In the first part, we examine cases with no hidden nodes, specifically focusing on Generalized Linear Models (GLMs). We investigate the well-specific model where the random noise possesses a zero mean, and the link function is both bounded and Lipschitz continuous. We propose several algorithms and our analysis demonstrates the feasibility of achieving an excess population risk that remains invariant to the data dimension. We also delve into the scenario involving the ReLU link function, and our findings mirror those of the bounded link function. We conclude this section by contrasting well-specified and misspecified models, using ReLU regression as a representative example. In the second part of the paper, we extend our ideas to two-layer neural networks with sigmoid or ReLU activation functions in the well-specified model. In the third part, we study the theoretical guarantees of DP-SGD in Abadi et al. (2016) for fully connected multi-layer neural networks. By utilizing recent advances in Neural Tangent Kernel theory, we provide the first excess population risk when both the sample size and the width of the network are sufficiently large. Additionally, we discuss the role of some parameters in DP-SGD regarding their utility, both theoretically and empirically.

Via

Liyang Zhu, Meng Ding, Vaneet Aggarwal, Jinhui Xu, Di Wang

In this paper, we revisit the problem of sparse linear regression in the local differential privacy (LDP) model. Existing research in the non-interactive and sequentially local models has focused on obtaining the lower bounds for the case where the underlying parameter is $1$-sparse, and extending such bounds to the more general $k$-sparse case has proven to be challenging. Moreover, it is unclear whether efficient non-interactive LDP (NLDP) algorithms exist. To address these issues, we first consider the problem in the $\epsilon$ non-interactive LDP model and provide a lower bound of $\Omega(\frac{\sqrt{dk\log d}}{\sqrt{n}\epsilon})$ on the $\ell_2$-norm estimation error for sub-Gaussian data, where $n$ is the sample size and $d$ is the dimension of the space. We propose an innovative NLDP algorithm, the very first of its kind for the problem. As a remarkable outcome, this algorithm also yields a novel and highly efficient estimator as a valuable by-product. Our algorithm achieves an upper bound of $\tilde{O}({\frac{d\sqrt{k}}{\sqrt{n}\epsilon}})$ for the estimation error when the data is sub-Gaussian, which can be further improved by a factor of $O(\sqrt{d})$ if the server has additional public but unlabeled data. For the sequentially interactive LDP model, we show a similar lower bound of $\Omega({\frac{\sqrt{dk}}{\sqrt{n}\epsilon}})$. As for the upper bound, we rectify a previous method and show that it is possible to achieve a bound of $\tilde{O}(\frac{k\sqrt{d}}{\sqrt{n}\epsilon})$. Our findings reveal fundamental differences between the non-private case, central DP model, and local DP model in the sparse linear regression problem.

Via

Shaopeng Fu, Di Wang

Adversarial training (AT) is a canonical method for enhancing the robustness of deep neural networks (DNNs). However, recent studies empirically demonstrated that it suffers from robust overfitting, i.e., a long time AT can be detrimental to the robustness of DNNs. This paper presents a theoretical explanation of robust overfitting for DNNs. Specifically, we non-trivially extend the neural tangent kernel (NTK) theory to AT and prove that an adversarially trained wide DNN can be well approximated by a linearized DNN. Moreover, for squared loss, closed-form AT dynamics for the linearized DNN can be derived, which reveals a new AT degeneration phenomenon: a long-term AT will result in a wide DNN degenerates to that obtained without AT and thus cause robust overfitting. Based on our theoretical results, we further design a method namely Adv-NTK, the first AT algorithm for infinite-width DNNs. Experiments on real-world datasets show that Adv-NTK can help infinite-width DNNs enhance comparable robustness to that of their finite-width counterparts, which in turn justifies our theoretical findings. The code is available at https://github.com/fshp971/adv-ntk.

Via