Abstract:Recent advances in offline Reinforcement Learning (RL) have proven that effective policy learning can benefit from imposing conservative constraints on pre-collected datasets. However, such static datasets often exhibit distribution bias, resulting in limited generalizability. To address this limitation, a straightforward solution is data augmentation (DA), which leverages generative models to enrich data distribution. Despite the promising results, current DA techniques focus solely on reconstructing future trajectories from given states, while ignoring the exploration of history transitions that reach them. This single-direction paradigm inevitably hinders the discovery of diverse behavior patterns, especially those leading to critical states that may have yielded high-reward outcomes. In this work, we introduce Bidirectional Trajectory Diffusion (BiTrajDiff), a novel DA framework for offline RL that models both future and history trajectories from any intermediate states. Specifically, we decompose the trajectory generation task into two independent yet complementary diffusion processes: one generating forward trajectories to predict future dynamics, and the other generating backward trajectories to trace essential history transitions.BiTrajDiff can efficiently leverage critical states as anchors to expand into potentially valuable yet underexplored regions of the state space, thereby facilitating dataset diversity. Extensive experiments on the D4RL benchmark suite demonstrate that BiTrajDiff achieves superior performance compared to other advanced DA methods across various offline RL backbones.
Abstract:Recent advances have demonstrated the effectiveness of Reinforcement Learning (RL) in improving the reasoning capabilities of Large Language Models (LLMs). However, existing works inevitably rely on high-quality instructions and verifiable rewards for effective training, both of which are often difficult to obtain in specialized domains. In this paper, we propose Self-play Reinforcement Learning(SeRL) to bootstrap LLM training with limited initial data. Specifically, SeRL comprises two complementary modules: self-instruction and self-rewarding. The former module generates additional instructions based on the available data at each training step, employing robust online filtering strategies to ensure instruction quality, diversity, and difficulty. The latter module introduces a simple yet effective majority-voting mechanism to estimate response rewards for additional instructions, eliminating the need for external annotations. Finally, SeRL performs conventional RL based on the generated data, facilitating iterative self-play learning. Extensive experiments on various reasoning benchmarks and across different LLM backbones demonstrate that the proposed SeRL yields results superior to its counterparts and achieves performance on par with those obtained by high-quality data with verifiable rewards. Our code is available at https://github.com/wantbook-book/SeRL.
Abstract:Video Diffusion Transformers (VDiTs) have achieved remarkable progress in high-quality video generation, but remain computationally expensive due to the quadratic complexity of attention over high-dimensional video sequences. Recent attention acceleration methods leverage the sparsity of attention patterns to improve efficiency; however, they often overlook inefficiencies of redundant long-range interactions. To address this problem, we propose \textbf{VORTA}, an acceleration framework with two novel components: 1) a sparse attention mechanism that efficiently captures long-range dependencies, and 2) a routing strategy that adaptively replaces full 3D attention with specialized sparse attention variants throughout the sampling process. It achieves a $1.76\times$ end-to-end speedup without quality loss on VBench. Furthermore, VORTA can seamlessly integrate with various other acceleration methods, such as caching and step distillation, reaching up to $14.41\times$ speedup with negligible performance degradation. VORTA demonstrates its efficiency and enhances the practicality of VDiTs in real-world settings.
Abstract:Large-scale Multi-Agent Reinforcement Learning (MARL) often suffers from the curse of dimensionality, as the exponential growth in agent interactions significantly increases computational complexity and impedes learning efficiency. To mitigate this, existing efforts that rely on Mean Field (MF) simplify the interaction landscape by approximating neighboring agents as a single mean agent, thus reducing overall complexity to pairwise interactions. However, these MF methods inevitably fail to account for individual differences, leading to aggregation noise caused by inaccurate iterative updates during MF learning. In this paper, we propose a Bi-level Mean Field (BMF) method to capture agent diversity with dynamic grouping in large-scale MARL, which can alleviate aggregation noise via bi-level interaction. Specifically, BMF introduces a dynamic group assignment module, which employs a Variational AutoEncoder (VAE) to learn the representations of agents, facilitating their dynamic grouping over time. Furthermore, we propose a bi-level interaction module to model both inter- and intra-group interactions for effective neighboring aggregation. Experiments across various tasks demonstrate that the proposed BMF yields results superior to the state-of-the-art methods. Our code will be made publicly available.
Abstract:Interpretable Graph Neural Networks (GNNs) aim to reveal the underlying reasoning behind model predictions, attributing their decisions to specific subgraphs that are informative. However, existing subgraph-based interpretable methods suffer from an overemphasis on local structure, potentially overlooking long-range dependencies within the entire graphs. Although recent efforts that rely on graph coarsening have proven beneficial for global interpretability, they inevitably reduce the graphs to a fixed granularity. Such an inflexible way can only capture graph connectivity at a specific level, whereas real-world graph tasks often exhibit relationships at varying granularities (e.g., relevant interactions in proteins span from functional groups, to amino acids, and up to protein domains). In this paper, we introduce a novel Tree-like Interpretable Framework (TIF) for graph classification, where plain GNNs are transformed into hierarchical trees, with each level featuring coarsened graphs of different granularity as tree nodes. Specifically, TIF iteratively adopts a graph coarsening module to compress original graphs (i.e., root nodes of trees) into increasingly coarser ones (i.e., child nodes of trees), while preserving diversity among tree nodes within different branches through a dedicated graph perturbation module. Finally, we propose an adaptive routing module to identify the most informative root-to-leaf paths, providing not only the final prediction but also the multi-granular interpretability for the decision-making process. Extensive experiments on the graph classification benchmarks with both synthetic and real-world datasets demonstrate the superiority of TIF in interpretability, while also delivering a competitive prediction performance akin to the state-of-the-art counterparts.
Abstract:In this work, we establish a novel theoretical connection between supervised fine-tuning and offline reinforcement learning under the token-level Markov decision process, revealing that large language models indeed learn an implicit $Q$-function for inference. Through this theoretical lens, we demonstrate that the widely used beam search method suffers from unacceptable over-optimism, where inference errors are inevitably amplified due to inflated $Q$-value estimations of suboptimal steps. To address this limitation, we propose Supervised Optimism Correction(SOC), which introduces a simple yet effective auxiliary loss for token-level $Q$-value estimations during supervised fine-tuning. Specifically, the auxiliary loss employs implicit value regularization to boost model confidence in expert-demonstrated responses, thereby suppressing over-optimism toward insufficiently supervised responses. Extensive experiments on mathematical reasoning benchmarks, including GSM8K, MATH, and GAOKAO, showcase the superiority of the proposed SOC with beam search across a series of open-source models.
Abstract:The success of large language models has garnered widespread attention for model merging techniques, especially training-free methods which combine model capabilities within the parameter space. However, two challenges remain: (1) uniform treatment of all parameters leads to performance degradation; (2) search-based algorithms are often inefficient. In this paper, we present an innovative framework termed Reinforced Model Merging (RMM), which encompasses an environment and agent tailored for merging tasks. These components interact to execute layer-wise merging actions, aiming to search the optimal merging architecture. Notably, RMM operates without any gradient computations on the original models, rendering it feasible for edge devices. Furthermore, by utilizing data subsets during the evaluation process, we addressed the bottleneck in the reward feedback phase, thereby accelerating RMM by up to 100 times. Extensive experiments demonstrate that RMM achieves state-of-the-art performance across various vision and NLP datasets and effectively overcomes the limitations of the existing baseline methods. Our code is available at https://github.com/WuDiHJQ/Reinforced-Model-Merging.
Abstract:Recent studies generally enhance MLLMs' reasoning capabilities via supervised fine-tuning on high-quality chain-of-thought reasoning data, which often leads models to merely imitate successful reasoning paths without understanding what the wrong reasoning paths are. In this work, we aim to enhance the MLLMs' reasoning ability beyond passively imitating positive reasoning paths. To this end, we design Step-wise Group Relative Policy Optimization (StepGRPO), a new online reinforcement learning framework that enables MLLMs to self-improve reasoning ability via simple, effective and dense step-wise rewarding. Specifically, StepGRPO introduces two novel rule-based reasoning rewards: Step-wise Reasoning Accuracy Reward (StepRAR) and Step-wise Reasoning Validity Reward (StepRVR). StepRAR rewards the reasoning paths that contain necessary intermediate reasoning steps via a soft key-step matching technique, while StepRAR rewards reasoning paths that follow a well-structured and logically consistent reasoning process through a reasoning completeness and logic evaluation strategy. With the proposed StepGRPO, we introduce R1-VL, a series of MLLMs with outstanding capabilities in step-by-step reasoning. Extensive experiments over 8 benchmarks demonstrate the superiority of our methods.
Abstract:Recent advancements in Large Language Model(LLM)-based Multi-Agent Systems(MAS) have demonstrated remarkable potential for tackling complex decision-making tasks. However, existing frameworks inevitably rely on serialized execution paradigms, where agents must complete sequential LLM planning before taking action. This fundamental constraint severely limits real-time responsiveness and adaptation, which is crucial in dynamic environments with ever-changing scenarios. In this paper, we propose a novel parallelized planning-acting framework for LLM-based MAS, featuring a dual-thread architecture with interruptible execution to enable concurrent planning and acting. Specifically, our framework comprises two core threads:(1) a planning thread driven by a centralized memory system, maintaining synchronization of environmental states and agent communication to support dynamic decision-making; and (2) an acting thread equipped with a comprehensive skill library, enabling automated task execution through recursive decomposition. Extensive experiments on challenging Minecraft demonstrate the effectiveness of the proposed framework.
Abstract:Tree of Thoughts (ToT) enhances Large Language Model (LLM) reasoning by structuring problem-solving as a spanning tree. However, recent methods focus on search accuracy while overlooking computational efficiency. The challenges of accelerating the ToT lie in the frequent switching of reasoning focus, and the redundant exploration of suboptimal solutions. To alleviate this dilemma, we propose Dynamic Parallel Tree Search (DPTS), a novel parallelism framework that aims to dynamically optimize the reasoning path in inference. It includes the Parallelism Streamline in the generation phase to build up a flexible and adaptive parallelism with arbitrary paths by fine-grained cache management and alignment. Meanwhile, the Search and Transition Mechanism filters potential candidates to dynamically maintain the reasoning focus on more possible solutions and have less redundancy. Experiments on Qwen-2.5 and Llama-3 with Math500 and GSM8K datasets show that DPTS significantly improves efficiency by 2-4x on average while maintaining or even surpassing existing reasoning algorithms in accuracy, making ToT-based reasoning more scalable and computationally efficient.