Abstract:In the realm of Text-attributed Graphs (TAGs), traditional graph neural networks (GNNs) often fall short due to the complex textual information associated with each node. Recent methods have improved node representations by leveraging large language models (LLMs) to enhance node text features, but these approaches typically require extensive annotations or fine-tuning across all nodes, which is both time-consuming and costly. To overcome these challenges, we introduce GAGA, an efficient framework for TAG representation learning. GAGA reduces annotation time and cost by focusing on annotating only representative nodes and edges. It constructs an annotation graph that captures the topological relationships among these annotations. Furthermore, GAGA employs a two-level alignment module to effectively integrate the annotation graph with the TAG, aligning their underlying structures. Experiments show that GAGA achieves classification accuracies on par with or surpassing state-of-the-art methods while requiring only 1% of the data to be annotated, demonstrating its high efficiency.
Abstract:Subsurface property neural network reparameterized full waveform inversion (FWI) has emerged as an effective unsupervised learning framework, which can invert stably with an inaccurate starting model. It updates the trainable neural network parameters instead of fine-tuning on the subsurface model directly. There are primarily two ways to embed the prior knowledge of the initial model into neural networks, that is, pretraining and denormalization. Pretraining first regulates the neural networks' parameters by fitting the initial velocity model; Denormalization directly adds the outputs of the network into the initial models without pretraining. In this letter, we systematically investigate the influence of the two ways of initial model incorporation for the neural network reparameterized FWI. We demonstrate that pretraining requires inverting the model perturbation based on a constant velocity value (mean) with a two-stage implementation. It leads to a complex workflow and inconsistency of objective functions in the two-stage process, causing the network parameters to become inactive and lose plasticity. Experimental results demonstrate that denormalization can simplify workflows, accelerate convergence, and enhance inversion accuracy compared with pretraining.
Abstract:Direct Preference Optimization (DPO) has emerged as a promising framework for aligning Large Language Models (LLMs) with human preferences by directly optimizing the log-likelihood difference between chosen and rejected responses. However, existing methods assign equal importance to all tokens in the response, while humans focus on more meaningful parts. This leads to suboptimal preference optimization, as irrelevant or noisy tokens disproportionately influence DPO loss. To address this limitation, we propose \textbf{O}ptimal \textbf{T}ransport-based token weighting scheme for enhancing direct \textbf{P}reference \textbf{O}ptimization (OTPO). By emphasizing semantically meaningful token pairs and de-emphasizing less relevant ones, our method introduces a context-aware token weighting scheme that yields a more contrastive reward difference estimate. This adaptive weighting enhances reward stability, improves interpretability, and ensures that preference optimization focuses on meaningful differences between responses. Extensive experiments have validated OTPO's effectiveness in improving instruction-following ability across various settings\footnote{Code is available at https://github.com/Mimasss2/OTPO.}.
Abstract:Artificial Intelligence (AI) is accelerating the transformation of scientific research paradigms, not only enhancing research efficiency but also driving innovation. We introduce NovelSeek, a unified closed-loop multi-agent framework to conduct Autonomous Scientific Research (ASR) across various scientific research fields, enabling researchers to tackle complicated problems in these fields with unprecedented speed and precision. NovelSeek highlights three key advantages: 1) Scalability: NovelSeek has demonstrated its versatility across 12 scientific research tasks, capable of generating innovative ideas to enhance the performance of baseline code. 2) Interactivity: NovelSeek provides an interface for human expert feedback and multi-agent interaction in automated end-to-end processes, allowing for the seamless integration of domain expert knowledge. 3) Efficiency: NovelSeek has achieved promising performance gains in several scientific fields with significantly less time cost compared to human efforts. For instance, in reaction yield prediction, it increased from 27.6% to 35.4% in just 12 hours; in enhancer activity prediction, accuracy rose from 0.52 to 0.79 with only 4 hours of processing; and in 2D semantic segmentation, precision advanced from 78.8% to 81.0% in a mere 30 hours.
Abstract:Visual autoregressive (VAR) modeling has marked a paradigm shift in image generation from next-token prediction to next-scale prediction. VAR predicts a set of tokens at each step from coarse to fine scale, leading to better image quality and faster inference speed compared to existing diffusion models. However, the large parameter size and computation cost hinder its deployment on edge devices. To reduce the memory and computation cost, we propose FPQVAR, an efficient post-training floating-point (FP) quantization framework for VAR featuring algorithm and hardware co-design. At the algorithm level, we first identify the challenges of quantizing VAR. To address them, we propose Dual Format Quantization for the highly imbalanced input activation. We further propose Group-wise Hadamard Transformation and GHT-Aware Learnable Transformation to address the time-varying outlier channels. At the hardware level, we design the first low-bit FP quantizer and multiplier with lookup tables on FPGA and propose the first FPGA-based VAR accelerator featuring low-bit FP computation and an elaborate two-level pipeline. Extensive experiments show that compared to the state-of-the-art quantization method, our proposed FPQVAR significantly improves Fr\'echet Inception Distance (FID) from 10.83 to 3.58, Inception Score (IS) from 175.9 to 241.5 under 4-bit quantization. FPQVAR also significantly improves the performance of 6-bit quantized VAR, bringing it on par with the FP16 model. Our accelerator on AMD-Xilinx VCK190 FPGA achieves a throughput of 1.1 image/s, which is 3.1x higher than the integer-based accelerator. It also demonstrates 3.6x and 2.8x higher energy efficiency compared to the integer-based accelerator and GPU baseline, respectively.
Abstract:All-in-one image restoration aims to recover clear images from various degradation types and levels with a unified model. Nonetheless, the significant variations among degradation types present challenges for training a universal model, often resulting in task interference, where the gradient update directions of different tasks may diverge due to shared parameters. To address this issue, motivated by the routing strategy, we propose DFPIR, a novel all-in-one image restorer that introduces Degradation-aware Feature Perturbations(DFP) to adjust the feature space to align with the unified parameter space. In this paper, the feature perturbations primarily include channel-wise perturbations and attention-wise perturbations. Specifically, channel-wise perturbations are implemented by shuffling the channels in high-dimensional space guided by degradation types, while attention-wise perturbations are achieved through selective masking in the attention space. To achieve these goals, we propose a Degradation-Guided Perturbation Block (DGPB) to implement these two functions, positioned between the encoding and decoding stages of the encoder-decoder architecture. Extensive experimental results demonstrate that DFPIR achieves state-of-the-art performance on several all-in-one image restoration tasks including image denoising, image dehazing, image deraining, motion deblurring, and low-light image enhancement. Our codes are available at https://github.com/TxpHome/DFPIR.
Abstract:This technical report presents Ring-Lite-Distill, a lightweight reasoning model derived from our open-source Mixture-of-Experts (MoE) Large Language Models (LLMs) Ling-Lite. This study demonstrates that through meticulous high-quality data curation and ingenious training paradigms, the compact MoE model Ling-Lite can be further trained to achieve exceptional reasoning capabilities, while maintaining its parameter-efficient architecture with only 2.75 billion activated parameters, establishing an efficient lightweight reasoning architecture. In particular, in constructing this model, we have not merely focused on enhancing advanced reasoning capabilities, exemplified by high-difficulty mathematical problem solving, but rather aimed to develop a reasoning model with more comprehensive competency coverage. Our approach ensures coverage across reasoning tasks of varying difficulty levels while preserving generic capabilities, such as instruction following, tool use, and knowledge retention. We show that, Ring-Lite-Distill's reasoning ability reaches a level comparable to DeepSeek-R1-Distill-Qwen-7B, while its general capabilities significantly surpass those of DeepSeek-R1-Distill-Qwen-7B. The models are accessible at https://huggingface.co/inclusionAI
Abstract:The Mixture of Experts (MoE) architecture has demonstrated significant advantages as it enables to increase the model capacity without a proportional increase in computation. However, the large MoE model size still introduces substantial memory demands, which usually requires expert offloading on resource-constrained platforms and incurs significant overhead. Hybrid CPU-GPU inference has been proposed to leverage CPU computation to reduce expert loading overhead but faces major challenges: on one hand, the expert activation patterns of MoE models are highly unstable, rendering the fixed mapping strategies in existing works inefficient; on the other hand, the hybrid CPU-GPU schedule for MoE is inherently complex due to the diverse expert sizes, structures, uneven workload distribution, etc. To address these challenges, in this paper, we propose HybriMoE, a hybrid CPU-GPU inference framework that improves resource utilization through a novel CPU-GPU scheduling and cache management system. HybriMoE introduces (i) a dynamic intra-layer scheduling strategy to balance workloads across CPU and GPU, (ii) an impact-driven inter-layer prefetching algorithm, and (iii) a score-based caching algorithm to mitigate expert activation instability. We implement HybriMoE on top of the kTransformers framework and evaluate it on three widely used MoE-based LLMs. Experimental results demonstrate that HybriMoE achieves an average speedup of 1.33$\times$ in the prefill stage and 1.70$\times$ in the decode stage compared to state-of-the-art hybrid MoE inference framework. Our code is available at: https://github.com/PKU-SEC-Lab/HybriMoE.
Abstract:Predicting the future movements of surrounding vehicles is essential for ensuring the safe operation and efficient navigation of autonomous vehicles (AVs) in urban traffic environments. Existing vehicle trajectory prediction methods primarily focus on improving overall performance, yet they struggle to address long-tail scenarios effectively. This limitation often leads to poor predictions in rare cases, significantly increasing the risk of safety incidents. Taking Argoverse 2 motion forecasting dataset as an example, we first investigate the long-tail characteristics in trajectory samples from two perspectives, individual motion and group interaction, and deriving deviation features to distinguish abnormal from regular scenarios. On this basis, we propose CDKFormer, a Contextual Deviation Knowledge-based Transformer model for long-tail trajectory prediction. CDKFormer integrates an attention-based scene context fusion module to encode spatiotemporal interaction and road topology. An additional deviation feature fusion module is proposed to capture the dynamic deviations in the target vehicle status. We further introduce a dual query-based decoder, supported by a multi-stream decoder block, to sequentially decode heterogeneous scene deviation features and generate multimodal trajectory predictions. Extensive experiments demonstrate that CDKFormer achieves state-of-the-art performance, significantly enhancing prediction accuracy and robustness for long-tailed trajectories compared to existing methods, thus advancing the reliability of AVs in complex real-world environments.
Abstract:Neurological disorders represent significant global health challenges, driving the advancement of brain signal analysis methods. Scalp electroencephalography (EEG) and intracranial electroencephalography (iEEG) are widely used to diagnose and monitor neurological conditions. However, dataset heterogeneity and task variations pose challenges in developing robust deep learning solutions. This review systematically examines recent advances in deep learning approaches for EEG/iEEG-based neurological diagnostics, focusing on applications across 7 neurological conditions using 46 datasets. We explore trends in data utilization, model design, and task-specific adaptations, highlighting the importance of pre-trained multi-task models for scalable, generalizable solutions. To advance research, we propose a standardized benchmark for evaluating models across diverse datasets to enhance reproducibility. This survey emphasizes how recent innovations can transform neurological diagnostics and enable the development of intelligent, adaptable healthcare solutions.