Abstract:While multimodal large language models excel at various tasks, they still suffer from hallucinations, which limit their reliability and scalability for broader domain applications. To address this issue, recent research mainly focuses on objective hallucination. However, for sequential images, besides objective hallucination, there is also behavioral hallucination, which is less studied. This work aims to fill in the gap. We first reveal that behavioral hallucinations mainly arise from two key factors: prior-driven bias and the snowball effect. Based on these observations, we introduce SHE (Sequence Hallucination Eradication), a lightweight, two-stage framework that (1) detects hallucinations via visual-textual alignment check using our proposed adaptive temporal window and (2) mitigates them via orthogonal projection onto the joint embedding space. We also propose a new metric (BEACH) to quantify behavioral hallucination severity. Empirical results on standard benchmarks demonstrate that SHE reduces behavioral hallucination by over 10% on BEACH while maintaining descriptive accuracy.
Abstract:As video large language models (Video-LLMs) become increasingly integrated into real-world applications that demand grounded multimodal reasoning, ensuring their factual consistency and reliability is of critical importance. However, sycophancy, the tendency of these models to align with user input even when it contradicts the visual evidence, undermines their trustworthiness in such contexts. Current sycophancy research has largely overlooked its specific manifestations in the video-language domain, resulting in a notable absence of systematic benchmarks and targeted evaluations to understand how Video-LLMs respond under misleading user input. To fill this gap, we propose VISE (Video-LLM Sycophancy Benchmarking and Evaluation), the first dedicated benchmark designed to evaluate sycophantic behavior in state-of-the-art Video-LLMs across diverse question formats, prompt biases, and visual reasoning tasks. Specifically, VISE pioneeringly brings linguistic perspectives on sycophancy into the visual domain, enabling fine-grained analysis across multiple sycophancy types and interaction patterns. In addition, we explore key-frame selection as an interpretable, training-free mitigation strategy, which reveals potential paths for reducing sycophantic bias by strengthening visual grounding.
Abstract:Transparency is a paramount concern in the medical field, prompting researchers to delve into the realm of explainable AI (XAI). Among these XAI methods, Concept Bottleneck Models (CBMs) aim to restrict the model's latent space to human-understandable high-level concepts by generating a conceptual layer for extracting conceptual features, which has drawn much attention recently. However, existing methods rely solely on concept features to determine the model's predictions, which overlook the intrinsic feature embeddings within medical images. To address this utility gap between the original models and concept-based models, we propose Vision Concept Transformer (VCT). Furthermore, despite their benefits, CBMs have been found to negatively impact model performance and fail to provide stable explanations when faced with input perturbations, which limits their application in the medical field. To address this faithfulness issue, this paper further proposes the Stable Vision Concept Transformer (SVCT) based on VCT, which leverages the vision transformer (ViT) as its backbone and incorporates a conceptual layer. SVCT employs conceptual features to enhance decision-making capabilities by fusing them with image features and ensures model faithfulness through the integration of Denoised Diffusion Smoothing. Comprehensive experiments on four medical datasets demonstrate that our VCT and SVCT maintain accuracy while remaining interpretable compared to baselines. Furthermore, even when subjected to perturbations, our SVCT model consistently provides faithful explanations, thus meeting the needs of the medical field.
Abstract:Rapid integration of large language models (LLMs) into societal applications has intensified concerns about their alignment with universal ethical principles, as their internal value representations remain opaque despite behavioral alignment advancements. Current approaches struggle to systematically interpret how values are encoded in neural architectures, limited by datasets that prioritize superficial judgments over mechanistic analysis. We introduce ValueLocate, a mechanistic interpretability framework grounded in the Schwartz Values Survey, to address this gap. Our method first constructs ValueInsight, a dataset that operationalizes four dimensions of universal value through behavioral contexts in the real world. Leveraging this dataset, we develop a neuron identification method that calculates activation differences between opposing value aspects, enabling precise localization of value-critical neurons without relying on computationally intensive attribution methods. Our proposed validation method demonstrates that targeted manipulation of these neurons effectively alters model value orientations, establishing causal relationships between neurons and value representations. This work advances the foundation for value alignment by bridging psychological value frameworks with neuron analysis in LLMs.
Abstract:Recently, AI-driven interactions with computing devices have advanced from basic prototype tools to sophisticated, LLM-based systems that emulate human-like operations in graphical user interfaces. We are now witnessing the emergence of \emph{Computer-Using Agents} (CUAs), capable of autonomously performing tasks such as navigating desktop applications, web pages, and mobile apps. However, as these agents grow in capability, they also introduce novel safety and security risks. Vulnerabilities in LLM-driven reasoning, with the added complexity of integrating multiple software components and multimodal inputs, further complicate the security landscape. In this paper, we present a systematization of knowledge on the safety and security threats of CUAs. We conduct a comprehensive literature review and distill our findings along four research objectives: \textit{\textbf{(i)}} define the CUA that suits safety analysis; \textit{\textbf{(ii)} } categorize current safety threats among CUAs; \textit{\textbf{(iii)}} propose a comprehensive taxonomy of existing defensive strategies; \textit{\textbf{(iv)}} summarize prevailing benchmarks, datasets, and evaluation metrics used to assess the safety and performance of CUAs. Building on these insights, our work provides future researchers with a structured foundation for exploring unexplored vulnerabilities and offers practitioners actionable guidance in designing and deploying secure Computer-Using Agents.
Abstract:Individualized treatment rules/recommendations (ITRs) aim to improve patient outcomes by tailoring treatments to the characteristics of each individual. However, when there are many treatment groups, existing methods face significant challenges due to data sparsity within treatment groups and highly unbalanced covariate distributions across groups. To address these challenges, we propose a novel calibration-weighted treatment fusion procedure that robustly balances covariates across treatment groups and fuses similar treatments using a penalized working model. The fusion procedure ensures the recovery of latent treatment group structures when either the calibration model or the outcome model is correctly specified. In the fused treatment space, practitioners can seamlessly apply state-of-the-art ITR learning methods with the flexibility to utilize a subset of covariates, thereby achieving robustness while addressing practical concerns such as fairness. We establish theoretical guarantees, including consistency, the oracle property of treatment fusion, and regret bounds when integrated with multi-armed ITR learning methods such as policy trees. Simulation studies show superior group recovery and policy value compared to existing approaches. We illustrate the practical utility of our method using a nationwide electronic health record-derived de-identified database containing data from patients with Chronic Lymphocytic Leukemia and Small Lymphocytic Lymphoma.
Abstract:Large Language Models (LLMs) have shown promise in clinical decision support, yet their application to triage remains underexplored. We systematically investigate the capabilities of LLMs in emergency department triage through two key dimensions: (1) robustness to distribution shifts and missing data, and (2) counterfactual analysis of intersectional biases across sex and race. We assess multiple LLM-based approaches, ranging from continued pre-training to in-context learning, as well as machine learning approaches. Our results indicate that LLMs exhibit superior robustness, and we investigate the key factors contributing to the promising LLM-based approaches. Furthermore, in this setting, we identify gaps in LLM preferences that emerge in particular intersections of sex and race. LLMs generally exhibit sex-based differences, but they are most pronounced in certain racial groups. These findings suggest that LLMs encode demographic preferences that may emerge in specific clinical contexts or particular combinations of characteristics.
Abstract:Large language models (LLMs) have made remarkable progress in various domains, yet they often suffer from repetitive text generation, a phenomenon we refer to as the "Repeat Curse". While previous studies have proposed decoding strategies to mitigate repetition, the underlying mechanism behind this issue remains insufficiently explored. In this work, we investigate the root causes of repetition in LLMs through the lens of mechanistic interpretability. Inspired by recent advances in Sparse Autoencoders (SAEs), which enable monosemantic feature extraction, we propose a novel approach, "Duplicatus Charm", to induce and analyze the Repeat Curse. Our method systematically identifies "Repetition Features" -the key model activations responsible for generating repetitive outputs. First, we locate the layers most involved in repetition through logit analysis. Next, we extract and stimulate relevant features using SAE-based activation manipulation. To validate our approach, we construct a repetition dataset covering token and paragraph level repetitions and introduce an evaluation pipeline to quantify the influence of identified repetition features. Furthermore, by deactivating these features, we have effectively mitigated the Repeat Curse.
Abstract:Vertical federated learning (VFL) enables a paradigm for vertically partitioned data across clients to collaboratively train machine learning models. Feature selection (FS) plays a crucial role in Vertical Federated Learning (VFL) due to the unique nature that data are distributed across multiple clients. In VFL, different clients possess distinct subsets of features for overlapping data samples, making the process of identifying and selecting the most relevant features a complex yet essential task. Previous FS efforts have primarily revolved around intra-client feature selection, overlooking vital feature interaction across clients, leading to subpar model outcomes. We introduce ICAFS, a novel multi-stage ensemble approach for effective FS in VFL by considering inter-client interactions. By employing conditional feature synthesis alongside multiple learnable feature selectors, ICAFS facilitates ensemble FS over these selectors using synthetic embeddings. This method bypasses the limitations of private gradient sharing and allows for model training using real data with refined embeddings. Experiments on multiple real-world datasets demonstrate that ICAFS surpasses current state-of-the-art methods in prediction accuracy.
Abstract:Social media is a rich source of real-world data that captures valuable patient experience information for pharmacovigilance. However, mining data from unstructured and noisy social media content remains a challenging task. We present a systematic framework that leverages large language models (LLMs) to extract medication side effects from social media and organize them into a knowledge graph (KG). We apply this framework to semaglutide for weight loss using data from Reddit. Using the constructed knowledge graph, we perform comprehensive analyses to investigate reported side effects across different semaglutide brands over time. These findings are further validated through comparison with adverse events reported in the FAERS database, providing important patient-centered insights into semaglutide's side effects that complement its safety profile and current knowledge base of semaglutide for both healthcare professionals and patients. Our work demonstrates the feasibility of using LLMs to transform social media data into structured KGs for pharmacovigilance.