Abstract:Currently, attention mechanisms have garnered increasing attention in Graph Neural Networks (GNNs), such as Graph Attention Networks (GATs) and Graph Transformers (GTs). It is not only due to the commendable boost in performance they offer but also its capacity to provide a more lucid rationale for model behaviors, which are often viewed as inscrutable. However, Attention-based GNNs have demonstrated instability in interpretability when subjected to various sources of perturbations during both training and testing phases, including factors like additional edges or nodes. In this paper, we propose a solution to this problem by introducing a novel notion called Faithful Graph Attention-based Interpretation (FGAI). In particular, FGAI has four crucial properties regarding stability and sensitivity to interpretation and final output distribution. Built upon this notion, we propose an efficient methodology for obtaining FGAI, which can be viewed as an ad hoc modification to the canonical Attention-based GNNs. To validate our proposed solution, we introduce two novel metrics tailored for graph interpretation assessment. Experimental results demonstrate that FGAI exhibits superior stability and preserves the interpretability of attention under various forms of perturbations and randomness, which makes FGAI a more faithful and reliable explanation tool.
Abstract:Graph representation learning has shown superior performance in numerous real-world applications, such as finance and social networks. Nevertheless, most existing works might make discriminatory predictions due to insufficient attention to fairness in their decision-making processes. This oversight has prompted a growing focus on fair representation learning. Among recent explorations on fair representation learning, prior works based on adversarial learning usually induce unstable or counterproductive performance. To achieve fairness in a stable manner, we present the design and implementation of GRAFair, a new framework based on a variational graph auto-encoder. The crux of GRAFair is the Conditional Fairness Bottleneck, where the objective is to capture the trade-off between the utility of representations and sensitive information of interest. By applying variational approximation, we can make the optimization objective tractable. Particularly, GRAFair can be trained to produce informative representations of tasks while containing little sensitive information without adversarial training. Experiments on various real-world datasets demonstrate the effectiveness of our proposed method in terms of fairness, utility, robustness, and stability.
Abstract:Providing explainable molecule property predictions is critical for many scientific domains, such as drug discovery and material science. Though transformer-based language models have shown great potential in accurate molecular property prediction, they neither provide chemically meaningful explanations nor faithfully reveal the molecular structure-property relationships. In this work, we develop a new framework for explainable molecular property prediction based on language models, dubbed as Lamole, which can provide chemical concepts-aligned explanations. We first leverage a designated molecular representation -- the Group SELFIES -- as it can provide chemically meaningful semantics. Because attention mechanisms in Transformers can inherently capture relationships within the input, we further incorporate the attention weights and gradients together to generate explanations for capturing the functional group interactions. We then carefully craft a marginal loss to explicitly optimize the explanations to be able to align with the chemists' annotations. We bridge the manifold hypothesis with the elaborated marginal loss to prove that the loss can align the explanations with the tangent space of the data manifold, leading to concept-aligned explanations. Experimental results over six mutagenicity datasets and one hepatotoxicity dataset demonstrate Lamole can achieve comparable classification accuracy and boost the explanation accuracy by up to 14.8%, being the state-of-the-art in explainable molecular property prediction.
Abstract:This paper proposes a new 3D molecule generation framework, called GOAT, for fast and effective 3D molecule generation based on the flow-matching optimal transport objective. Specifically, we formulate a geometric transport formula for measuring the cost of mapping multi-modal features (e.g., continuous atom coordinates and categorical atom types) between a base distribution and a target data distribution. Our formula is solved within a unified, equivalent, and smooth representation space. This is achieved by transforming the multi-modal features into a continuous latent space with equivalent networks. In addition, we find that identifying optimal distributional coupling is necessary for fast and effective transport between any two distributions. We further propose a flow refinement and purification mechanism for optimal coupling identification. By doing so, GOAT can turn arbitrary distribution couplings into new deterministic couplings, leading to a unified optimal transport path for fast 3D molecule generation. The purification filters the subpar molecules to ensure the ultimate generation performance. We theoretically prove the proposed method indeed reduced the transport cost. Finally, extensive experiments show that GOAT enjoys the efficiency of solving geometric optimal transport, leading to a double speedup compared to the sub-optimal method while achieving the best generation quality regarding validity, uniqueness, and novelty.
Abstract:Missing data imputation poses a paramount challenge when dealing with graph data. Prior works typically are based on feature propagation or graph autoencoders to address this issue. However, these methods usually encounter the over-smoothing issue when dealing with missing data, as the graph neural network (GNN) modules are not explicitly designed for handling missing data. This paper proposes a novel framework, called Dual-Path Generative Adversarial Network (DPGAN), that can deal simultaneously with missing data and avoid over-smoothing problems. The crux of our work is that it admits both global and local representations of the input graph signal, which can capture the long-range dependencies. It is realized via our proposed generator, consisting of two key components, i.e., MLPUNet++ and GraphUNet++. Our generator is trained with a designated discriminator via an adversarial process. In particular, to avoid assessing the entire graph as did in the literature, our discriminator focuses on the local subgraph fidelity, thereby boosting the quality of the local imputation. The subgraph size is adjustable, allowing for control over the intensity of adversarial regularization. Comprehensive experiments across various benchmark datasets substantiate that DPGAN consistently rivals, if not outperforms, existing state-of-the-art imputation algorithms. The code is provided at \url{https://github.com/momoxia/DPGAN}.
Abstract:While graph neural networks (GNNs) have become the de-facto standard for graph-based node classification, they impose a strong assumption on the availability of sufficient labeled samples. This assumption restricts the classification performance of prevailing GNNs on many real-world applications suffering from low-data regimes. Specifically, features extracted from scarce labeled nodes could not provide sufficient supervision for the unlabeled samples, leading to severe over-fitting. In this work, we point out that leveraging subgraphs to capture long-range dependencies can augment the representation of a node with homophily properties, thus alleviating the low-data regime. However, prior works leveraging subgraphs fail to capture the long-range dependencies among nodes. To this end, we present a novel self-supervised learning framework, called multi-view subgraph neural networks (Muse), for handling long-range dependencies. In particular, we propose an information theory-based identification mechanism to identify two types of subgraphs from the views of input space and latent space, respectively. The former is to capture the local structure of the graph, while the latter captures the long-range dependencies among nodes. By fusing these two views of subgraphs, the learned representations can preserve the topological properties of the graph at large, including the local structure and long-range dependencies, thus maximizing their expressiveness for downstream node classification tasks. Experimental results show that Muse outperforms the alternative methods on node classification tasks with limited labeled data.
Abstract:Can we train a molecule generator that can generate 3D molecules from a new domain, circumventing the need to collect data? This problem can be cast as the problem of domain adaptive molecule generation. This work presents a novel and principled diffusion-based approach, called GADM, that allows shifting a generative model to desired new domains without the need to collect even a single molecule. As the domain shift is typically caused by the structure variations of molecules, e.g., scaffold variations, we leverage a designated equivariant masked autoencoder (MAE) along with various masking strategies to capture the structural-grained representations of the in-domain varieties. In particular, with an asymmetric encoder-decoder module, the MAE can generalize to unseen structure variations from the target domains. These structure variations are encoded with an equivariant encoder and treated as domain supervisors to control denoising. We show that, with these encoded structural-grained domain supervisors, GADM can generate effective molecules within the desired new domains. We conduct extensive experiments across various domain adaptation tasks over benchmarking datasets. We show that our approach can improve up to 65.6% in terms of success rate defined based on molecular validity, uniqueness, and novelty compared to alternative baselines.
Abstract:Privacy and Byzantine resilience are two indispensable requirements for a federated learning (FL) system. Although there have been extensive studies on privacy and Byzantine security in their own track, solutions that consider both remain sparse. This is due to difficulties in reconciling privacy-preserving and Byzantine-resilient algorithms. In this work, we propose a solution to such a two-fold issue. We use our version of differentially private stochastic gradient descent (DP-SGD) algorithm to preserve privacy and then apply our Byzantine-resilient algorithms. We note that while existing works follow this general approach, an in-depth analysis on the interplay between DP and Byzantine resilience has been ignored, leading to unsatisfactory performance. Specifically, for the random noise introduced by DP, previous works strive to reduce its impact on the Byzantine aggregation. In contrast, we leverage the random noise to construct an aggregation that effectively rejects many existing Byzantine attacks. We provide both theoretical proof and empirical experiments to show our protocol is effective: retaining high accuracy while preserving the DP guarantee and Byzantine resilience. Compared with the previous work, our protocol 1) achieves significantly higher accuracy even in a high privacy regime; 2) works well even when up to 90% of distributive workers are Byzantine.
Abstract:This work presents an effective depth-consistency self-prompt Transformer for image dehazing. It is motivated by an observation that the estimated depths of an image with haze residuals and its clear counterpart vary. Enforcing the depth consistency of dehazed images with clear ones, therefore, is essential for dehazing. For this purpose, we develop a prompt based on the features of depth differences between the hazy input images and corresponding clear counterparts that can guide dehazing models for better restoration. Specifically, we first apply deep features extracted from the input images to the depth difference features for generating the prompt that contains the haze residual information in the input. Then we propose a prompt embedding module that is designed to perceive the haze residuals, by linearly adding the prompt to the deep features. Further, we develop an effective prompt attention module to pay more attention to haze residuals for better removal. By incorporating the prompt, prompt embedding, and prompt attention into an encoder-decoder network based on VQGAN, we can achieve better perception quality. As the depths of clear images are not available at inference, and the dehazed images with one-time feed-forward execution may still contain a portion of haze residuals, we propose a new continuous self-prompt inference that can iteratively correct the dehazing model towards better haze-free image generation. Extensive experiments show that our method performs favorably against the state-of-the-art approaches on both synthetic and real-world datasets in terms of perception metrics including NIQE, PI, and PIQE.
Abstract:Recent years have seen advances on principles and guidance relating to accountable and ethical use of artificial intelligence (AI) spring up around the globe. Specifically, Data Privacy, Accountability, Interpretability, Robustness, and Reasoning have been broadly recognized as fundamental principles of using machine learning (ML) technologies on decision-critical and/or privacy-sensitive applications. On the other hand, in tremendous real-world applications, data itself can be well represented as various structured formalisms, such as graph-structured data (e.g., networks), grid-structured data (e.g., images), sequential data (e.g., text), etc. By exploiting the inherently structured knowledge, one can design plausible approaches to identify and use more relevant variables to make reliable decisions, thereby facilitating real-world deployments.