refer to the report for detailed contributions
Abstract:Offline safe reinforcement learning (RL) aims to learn policies from a fixed dataset while maximizing performance under cumulative cost constraints. In practice, deployment requirements often vary across scenarios, necessitating a single policy that can adapt zero-shot to different cost thresholds. However, most existing offline safe RL methods are trained under a pre-specified threshold, yielding policies with limited generalization and deployment flexibility across cost thresholds. Motivated by recent progress in conditional sequence modeling (CSM), which enables flexible goal-conditioned control by specifying target returns, we propose RCDT, a CSM-based method that supports zero-shot deployment across multiple cost thresholds within a single trained policy. RCDT is the first CSM-based offline safe RL algorithm that integrates a Lagrangian-style cost penalty with an auto-adaptive penalty coefficient. To avoid overly conservative behavior and achieve a more favorable return--cost trade-off, a reward--cost-aware trajectory reweighting mechanism and Q-value regularization are further incorporated. Extensive experiments on the DSRL benchmark demonstrate that RCDT consistently improves return--cost trade-offs over representative baselines, advancing the state-of-the-art in offline safe RL.
Abstract:Spoken dialogue is a primary source of information in videos; therefore, accurately identifying who spoke what and when is essential for deep video understanding. We introduce D-ORCA, a \textbf{d}ialogue-centric \textbf{o}mni-modal large language model optimized for \textbf{r}obust audio-visual \textbf{ca}ptioning. We further curate DVD, a large-scale, high-quality bilingual dataset comprising nearly 40,000 multi-party dialogue videos for training and 2000 videos for evaluation in English and Mandarin, addressing a critical gap in the open-source ecosystem. To ensure fine-grained captioning accuracy, we adopt group relative policy optimization with three novel reward functions that assess speaker attribution accuracy, global speech content accuracy, and sentence-level temporal boundary alignment. These rewards are derived from evaluation metrics widely used in speech processing and, to our knowledge, are applied for the first time as reinforcement learning objectives for audio-visual captioning. Extensive experiments demonstrate that D-ORCA substantially outperforms existing open-source models in speaker identification, speech recognition, and temporal grounding. Notably, despite having only 8 billion parameters, D-ORCA achieves performance competitive with Qwen3-Omni across several general-purpose audio-visual understanding benchmarks. Demos are available at \href{https://d-orca-llm.github.io/}{https://d-orca-llm.github.io/}. Our code, data, and checkpoints will be available at \href{https://github.com/WeChatCV/D-ORCA/}{https://github.com/WeChatCV/D-ORCA/}.
Abstract:In this report, we introduce ERNIE 5.0, a natively autoregressive foundation model desinged for unified multimodal understanding and generation across text, image, video, and audio. All modalities are trained from scratch under a unified next-group-of-tokens prediction objective, based on an ultra-sparse mixture-of-experts (MoE) architecture with modality-agnostic expert routing. To address practical challenges in large-scale deployment under diverse resource constraints, ERNIE 5.0 adopts a novel elastic training paradigm. Within a single pre-training run, the model learns a family of sub-models with varying depths, expert capacities, and routing sparsity, enabling flexible trade-offs among performance, model size, and inference latency in memory- or time-constrained scenarios. Moreover, we systematically address the challenges of scaling reinforcement learning to unified foundation models, thereby guaranteeing efficient and stable post-training under ultra-sparse MoE architectures and diverse multimodal settings. Extensive experiments demonstrate that ERNIE 5.0 achieves strong and balanced performance across multiple modalities. To the best of our knowledge, among publicly disclosed models, ERNIE 5.0 represents the first production-scale realization of a trillion-parameter unified autoregressive model that supports both multimodal understanding and generation. To facilitate further research, we present detailed visualizations of modality-agnostic expert routing in the unified model, alongside comprehensive empirical analysis of elastic training, aiming to offer profound insights to the community.
Abstract:Federated Learning (FL) enables collaborative model training across large-scale distributed service nodes while preserving data privacy, making it a cornerstone of intelligent service systems in edge-cloud environments. However, in real-world service-oriented deployments, data generated by heterogeneous users, devices, and application scenarios are inherently non-IID. This severe data heterogeneity critically undermines the convergence stability, generalization ability, and ultimately the quality of service delivered by the global model. To address this challenge, we propose FLood, a novel FL framework inspired by out-of-distribution (OOD) detection. FLood dynamically counteracts the adverse effects of heterogeneity through a dual-weighting mechanism that jointly governs local training and global aggregation. At the client level, it adaptively reweights the supervised loss by upweighting pseudo-OOD samples, thereby encouraging more robust learning from distributionally misaligned or challenging data. At the server level, it refines model aggregation by weighting client contributions according to their OOD confidence scores, prioritizing updates from clients with higher in-distribution consistency and enhancing the global model's robustness and convergence stability. Extensive experiments across multiple benchmarks under diverse non-IID settings demonstrate that FLood consistently outperforms state-of-the-art FL methods in both accuracy and generalization. Furthermore, FLood functions as an orthogonal plug-in module: it seamlessly integrates with existing FL algorithms to boost their performance under heterogeneity without modifying their core optimization logic. These properties make FLood a practical and scalable solution for deploying reliable intelligent services in real-world federated environments.
Abstract:The advancement of Large Language Model (LLM)-powered agents has enabled automated task processing through reasoning and tool invocation capabilities. However, existing frameworks often operate under the idealized assumption that tool executions are invariably successful, relying solely on textual descriptions that fail to distinguish precise performance boundaries and cannot adapt to iterative tool updates. This gap introduces uncertainty in planning and execution, particularly in domains like visual content generation (AIGC), where nuanced tool performance significantly impacts outcomes. To address this, we propose PerfGuard, a performance-aware agent framework for visual content generation that systematically models tool performance boundaries and integrates them into task planning and scheduling. Our framework introduces three core mechanisms: (1) Performance-Aware Selection Modeling (PASM), which replaces generic tool descriptions with a multi-dimensional scoring system based on fine-grained performance evaluations; (2) Adaptive Preference Update (APU), which dynamically optimizes tool selection by comparing theoretical rankings with actual execution rankings; and (3) Capability-Aligned Planning Optimization (CAPO), which guides the planner to generate subtasks aligned with performance-aware strategies. Experimental comparisons against state-of-the-art methods demonstrate PerfGuard's advantages in tool selection accuracy, execution reliability, and alignment with user intent, validating its robustness and practical utility for complex AIGC tasks. The project code is available at https://github.com/FelixChan9527/PerfGuard.
Abstract:Visual information, such as subtitles in a movie, often helps automatic speech recognition. In this paper, we propose Donut-Whisper, an audio-visual ASR model with dual encoder to leverage visual information to improve speech recognition performance in both English and Chinese. Donut-Whisper combines the advantage of the linear and the Q-Former-based modality alignment structures via a cross-attention module, generating more powerful audio-visual features. Meanwhile, we propose a lightweight knowledge distillation scheme showcasing the potential of using audio-visual models to teach audio-only models to achieve better performance. Moreover, we propose a new multilingual audio-visual speech recognition dataset based on movie clips containing both Chinese and English partitions. As a result, Donut-Whisper achieved significantly better performance on both English and Chinese partition of the dataset compared to both Donut and Whisper large V3 baselines. In particular, an absolute 5.75% WER reduction and a 16.5% absolute CER reduction were achieved on the English and Chinese sets respectively compared to the Whisper ASR baseline.
Abstract:We introduce LongCat-Flash-Thinking-2601, a 560-billion-parameter open-source Mixture-of-Experts (MoE) reasoning model with superior agentic reasoning capability. LongCat-Flash-Thinking-2601 achieves state-of-the-art performance among open-source models on a wide range of agentic benchmarks, including agentic search, agentic tool use, and tool-integrated reasoning. Beyond benchmark performance, the model demonstrates strong generalization to complex tool interactions and robust behavior under noisy real-world environments. Its advanced capability stems from a unified training framework that combines domain-parallel expert training with subsequent fusion, together with an end-to-end co-design of data construction, environments, algorithms, and infrastructure spanning from pre-training to post-training. In particular, the model's strong generalization capability in complex tool-use are driven by our in-depth exploration of environment scaling and principled task construction. To optimize long-tailed, skewed generation and multi-turn agentic interactions, and to enable stable training across over 10,000 environments spanning more than 20 domains, we systematically extend our asynchronous reinforcement learning framework, DORA, for stable and efficient large-scale multi-environment training. Furthermore, recognizing that real-world tasks are inherently noisy, we conduct a systematic analysis and decomposition of real-world noise patterns, and design targeted training procedures to explicitly incorporate such imperfections into the training process, resulting in improved robustness for real-world applications. To further enhance performance on complex reasoning tasks, we introduce a Heavy Thinking mode that enables effective test-time scaling by jointly expanding reasoning depth and width through intensive parallel thinking.
Abstract:Incremental unlearning (IU) is critical for pre-trained models to comply with sequential data deletion requests, yet existing methods primarily suppress parameters or confuse knowledge without explicit constraints on both feature and gradient level, resulting in \textit{superficial forgetting} where residual information remains recoverable. This incomplete forgetting risks security breaches and disrupts retention balance, especially in IU scenarios. We propose FG-OrIU (\textbf{F}eature-\textbf{G}radient \textbf{Or}thogonality for \textbf{I}ncremental \textbf{U}nlearning), the first framework unifying orthogonal constraints on both features and gradients level to achieve deep forgetting, where the forgetting effect is irreversible. FG-OrIU decomposes feature spaces via Singular Value Decomposition (SVD), separating forgetting and remaining class features into distinct subspaces. It then enforces dual constraints: feature orthogonal projection on both forgetting and remaining classes, while gradient orthogonal projection prevents the reintroduction of forgotten knowledge and disruption to remaining classes during updates. Additionally, dynamic subspace adaptation merges newly forgetting subspaces and contracts remaining subspaces, ensuring a stable balance between removal and retention across sequential unlearning tasks. Extensive experiments demonstrate the effectiveness of our method.
Abstract:Social robots are increasingly applied as health behavior change interventions, yet actionable knowledge to guide their design and evaluation remains limited. This systematic review synthesizes (1) the behavior change strategies used in existing HRI studies employing social robots to promote health behavior change, and (2) the evaluation methods applied to assess behavior change outcomes. Relevant literature was identified through systematic database searches and hand searches. Analysis of 39 studies revealed four overarching categories of behavior change strategies: coaching strategies, counseling strategies, social influence strategies, and persuasion-enhancing strategies. These strategies highlight the unique affordances of social robots as behavior change interventions and offer valuable design heuristics. The review also identified key characteristics of current evaluation practices, including study designs, settings, durations, and outcome measures, on the basis of which we propose several directions for future HRI research.
Abstract:Speculative decoding (SD) has emerged as a promising approach to accelerate LLM inference without sacrificing output quality. Existing SD methods tailored for video-LLMs primarily focus on pruning redundant visual tokens to mitigate the computational burden of massive visual inputs. However, existing methods do not achieve inference acceleration comparable to text-only LLMs. We observe from extensive experiments that this phenomenon mainly stems from two limitations: (i) their pruning strategies inadequately preserve visual semantic tokens, degrading draft quality and acceptance rates; (ii) even with aggressive pruning (e.g., 90% visual tokens removed), the draft model's remaining inference cost limits overall speedup. To address these limitations, we propose HIPPO, a general holistic-aware parallel speculative decoding framework. Specifically, HIPPO proposes (i) a semantic-aware token preservation method, which fuses global attention scores with local visual semantics to retain semantic information at high pruning ratios; (ii) a video parallel SD algorithm that decouples and overlaps draft generation and target verification phases. Experiments on four video-LLMs across six benchmarks demonstrate HIPPO's effectiveness, yielding up to 3.51x speedup compared to vanilla auto-regressive decoding.