Zhejiang University, Hangzhou, China
Abstract:Large Language Models face an emerging and critical threat known as latency attacks. Because LLM inference is inherently expensive, even modest slowdowns can translate into substantial operating costs and severe availability risks. Recently, a growing body of research has focused on algorithmic complexity attacks by crafting inputs to trigger worst-case output lengths. However, we report a counter-intuitive finding that these algorithmic latency attacks are largely ineffective against modern LLM serving systems. We reveal that system-level optimization such as continuous batching provides a logical isolation to mitigate contagious latency impact on co-located users. To this end, in this paper, we shift the focus from the algorithm to the system layer, and introduce a new Fill and Squeeze attack strategy targeting the state transition of the scheduler. "Fill" first exhausts the global KV cache to induce Head-of-Line blocking, while "Squeeze" forces the system into repetitive preemption. By manipulating output lengths using methods from simple plain-text prompts to more complex prompt engineering, and leveraging side-channel probing of memory status, we demonstrate that the attack can be orchestrated in a black-box setting with much less cost. Extensive evaluations indicate by up to 20-280x average slowdown on Time to First Token and 1.5-4x average slowdown on Time Per Output Token compared to existing attacks with 30-40% lower attack cost.
Abstract:Spoken dialogue is a primary source of information in videos; therefore, accurately identifying who spoke what and when is essential for deep video understanding. We introduce D-ORCA, a \textbf{d}ialogue-centric \textbf{o}mni-modal large language model optimized for \textbf{r}obust audio-visual \textbf{ca}ptioning. We further curate DVD, a large-scale, high-quality bilingual dataset comprising nearly 40,000 multi-party dialogue videos for training and 2000 videos for evaluation in English and Mandarin, addressing a critical gap in the open-source ecosystem. To ensure fine-grained captioning accuracy, we adopt group relative policy optimization with three novel reward functions that assess speaker attribution accuracy, global speech content accuracy, and sentence-level temporal boundary alignment. These rewards are derived from evaluation metrics widely used in speech processing and, to our knowledge, are applied for the first time as reinforcement learning objectives for audio-visual captioning. Extensive experiments demonstrate that D-ORCA substantially outperforms existing open-source models in speaker identification, speech recognition, and temporal grounding. Notably, despite having only 8 billion parameters, D-ORCA achieves performance competitive with Qwen3-Omni across several general-purpose audio-visual understanding benchmarks. Demos are available at \href{https://d-orca-llm.github.io/}{https://d-orca-llm.github.io/}. Our code, data, and checkpoints will be available at \href{https://github.com/WeChatCV/D-ORCA/}{https://github.com/WeChatCV/D-ORCA/}.
Abstract:Reinforcement Learning with Verifiable Rewards (RLVR) is increasingly viewed as a tree pruning mechanism. However, we identify a systemic pathology termed Recursive Space Contraction (RSC), an irreversible collapse driven by the combined dynamics of positive sharpening and negative squeezing, where the sampling probability of valid alternatives vanishes. While Kullback-Leibler (KL) regularization aims to mitigate this, it imposes a rigid Shape Matching constraint that forces the policy to mimic the reference model's full density, creating a gradient conflict with the sharpening required for correctness. We propose Anchored Policy Optimization (APO), shifting the paradigm from global Shape Matching to Support Coverage. By defining a Safe Manifold based on the reference model's high-confidence support, APO permits aggressive sharpening for efficiency while selectively invoking a restorative force during error correction to prevent collapse. We theoretically derive that APO serves as a gradient-aligned mechanism to maximize support coverage, enabling an Elastic Recovery that re-inflates valid branches. Empirical evaluations on mathematical benchmarks demonstrate that APO breaks the accuracy-diversity trade-off, significantly improving Pass@1 while restoring the Pass@K diversity typically lost by standard policy gradient methods.
Abstract:Diffusion models have emerged as powerful generative tools for modeling complex data distributions, yet their purely data-driven nature limits applicability in practical engineering and scientific problems where physical laws need to be followed. This paper proposes Physics-Informed Learning via Diffusion (PILD), a framework that unifies diffusion modeling and first-principles physical constraints by introducing a virtual residual observation sampled from a Laplace distribution to supervise generation during training. To further integrate physical laws, a conditional embedding module is incorporated to inject physical information into the denoising network at multiple layers, ensuring consistent guidance throughout the diffusion process. The proposed PILD framework is concise, modular, and broadly applicable to problems governed by ordinary differential equations, partial differential equations, as well as algebraic equations or inequality constraints. Extensive experiments across engineering and scientific tasks including estimating vehicle trajectories, tire forces, Darcy flow and plasma dynamics, demonstrate that our PILD substantially improves accuracy, stability, and generalization over existing physics-informed and diffusion-based baselines.
Abstract:In this paper, we introduce ScenePilot-Bench, a large-scale first-person driving benchmark designed to evaluate vision-language models (VLMs) in autonomous driving scenarios. ScenePilot-Bench is built upon ScenePilot-4K, a diverse dataset comprising 3,847 hours of driving videos, annotated with multi-granularity information including scene descriptions, risk assessments, key participant identification, ego trajectories, and camera parameters. The benchmark features a four-axis evaluation suite that assesses VLM capabilities in scene understanding, spatial perception, motion planning, and GPT-Score, with safety-aware metrics and cross-region generalization settings. We benchmark representative VLMs on ScenePilot-Bench, providing empirical analyses that clarify current performance boundaries and identify gaps for driving-oriented reasoning. ScenePilot-Bench offers a comprehensive framework for evaluating and advancing VLMs in safety-critical autonomous driving contexts.
Abstract:Despite substantial efforts toward improving the moral alignment of Vision-Language Models (VLMs), it remains unclear whether their ethical judgments are stable in realistic settings. This work studies moral robustness in VLMs, defined as the ability to preserve moral judgments under textual and visual perturbations that do not alter the underlying moral context. We systematically probe VLMs with a diverse set of model-agnostic multimodal perturbations and find that their moral stances are highly fragile, frequently flipping under simple manipulations. Our analysis reveals systematic vulnerabilities across perturbation types, moral domains, and model scales, including a sycophancy trade-off where stronger instruction-following models are more susceptible to persuasion. We further show that lightweight inference-time interventions can partially restore moral stability. These results demonstrate that moral alignment alone is insufficient and that moral robustness is a necessary criterion for the responsible deployment of VLMs.




Abstract:While embeddings from multimodal large language models (LLMs) excel as general-purpose representations, their application to dynamic modalities like audio and video remains underexplored. We introduce WAVE (\textbf{u}nified \& \textbf{v}ersatile \textbf{a}udio-\textbf{v}isual \textbf{e}mbeddings), the first LLM-based embedding that creates a unified representation space for text, audio, and video modalities. WAVE employs a novel hierarchical feature fusion strategy and a joint multi-modal, multi-task training approach to enable two key capabilities: any-to-any cross-modal retrieval and the generation of prompt-aware embeddings tailored to user instructions. Experimentally, WAVE sets a new state-of-the-art on the MMEB-v2 video benchmark and achieves superior results in audio and video-to-audio retrieval. Its prompt-aware nature also yields remarkable performance in multimodal question answering, significantly outperforming existing embedding models. Ablation studies validate our joint training strategy, demonstrating improved performance across all modalities. With a newly introduced benchmark for versatile audio-visual learning, WAVE opens up broad possibilities for cross-modal, any-to-any applications. Our code, checkpoints, and data will be released.
Abstract:Traffic congestion and violations pose significant challenges for urban mobility and road safety. Traditional traffic monitoring systems, such as fixed cameras and sensor-based methods, are often constrained by limited coverage, low adaptability, and poor scalability. To address these challenges, this paper introduces an advanced unmanned aerial vehicle (UAV)-based traffic surveillance system capable of accurate vehicle detection, classification, tracking, and behavioral analysis in real-world, unconstrained urban environments. The system leverages multi-scale and multi-angle template matching, Kalman filtering, and homography-based calibration to process aerial video data collected from altitudes of approximately 200 meters. A case study in urban area demonstrates robust performance, achieving a detection precision of 91.8%, an F1-score of 90.5%, and tracking metrics (MOTA/MOTP) of 92.1% and 93.7%, respectively. Beyond precise detection, the system classifies five vehicle types and automatically detects critical traffic violations, including unsafe lane changes, illegal double parking, and crosswalk obstructions, through the fusion of geofencing, motion filtering, and trajectory deviation analysis. The integrated analytics module supports origin-destination tracking, vehicle count visualization, inter-class correlation analysis, and heatmap-based congestion modeling. Additionally, the system enables entry-exit trajectory profiling, vehicle density estimation across road segments, and movement direction logging, supporting comprehensive multi-scale urban mobility analytics. Experimental results confirms the system's scalability, accuracy, and practical relevance, highlighting its potential as an enforcement-aware, infrastructure-independent traffic monitoring solution for next-generation smart cities.




Abstract:The rapid development of Deepfake technology poses severe challenges to social trust and information security. While most existing detection methods primarily rely on passive analyses, due to unresolvable high-quality Deepfake contents, proactive defense has recently emerged by inserting invisible signals in advance of image editing. In this paper, we introduce a proactive Deepfake detection approach based on facial texture features. Since human eyes are more sensitive to perturbations in smooth regions, we invisibly insert perturbations within texture regions that have low perceptual saliency, applying localized perturbations to key texture regions while minimizing unwanted noise in non-textured areas. Our texture-guided perturbation framework first extracts preliminary texture features via Local Binary Patterns (LBP), and then introduces a dual-model attention strategy to generate and optimize texture perturbations. Experiments on CelebA-HQ and LFW datasets demonstrate the promising performance of our method in distorting Deepfake generation and producing obvious visual defects under multiple attack models, providing an efficient and scalable solution for proactive Deepfake detection.
Abstract:As artificial intelligence (AI) advances into diverse applications, ensuring reliability of AI models is increasingly critical. Conventional neural networks offer strong predictive capabilities but produce deterministic outputs without inherent uncertainty estimation, limiting their reliability in safety-critical domains. Probabilistic neural networks (PNNs), which introduce randomness, have emerged as a powerful approach for enabling intrinsic uncertainty quantification. However, traditional CMOS architectures are inherently designed for deterministic operation and actively suppress intrinsic randomness. This poses a fundamental challenge for implementing PNNs, as probabilistic processing introduces significant computational overhead. To address this challenge, we introduce a Magnetic Probabilistic Computing (MPC) platform-an energy-efficient, scalable hardware accelerator that leverages intrinsic magnetic stochasticity for uncertainty-aware computing. This physics-driven strategy utilizes spintronic systems based on magnetic domain walls (DWs) and their dynamics to establish a new paradigm of physical probabilistic computing for AI. The MPC platform integrates three key mechanisms: thermally induced DW stochasticity, voltage controlled magnetic anisotropy (VCMA), and tunneling magnetoresistance (TMR), enabling fully electrical and tunable probabilistic functionality at the device level. As a representative demonstration, we implement a Bayesian Neural Network (BNN) inference structure and validate its functionality on CIFAR-10 classification tasks. Compared to standard 28nm CMOS implementations, our approach achieves a seven orders of magnitude improvement in the overall figure of merit, with substantial gains in area efficiency, energy consumption, and speed. These results underscore the MPC platform's potential to enable reliable and trustworthy physical AI systems.