Perry
Abstract:Human motion generation has emerged as a critical technology with transformative potential for real-world applications. However, existing vision-language-motion models (VLMMs) face significant limitations that hinder their practical deployment. We identify controllability as a main bottleneck, manifesting in five key aspects: inadequate response to diverse human commands, limited pose initialization capabilities, poor performance on long-term sequences, insufficient handling of unseen scenarios, and lack of fine-grained control over individual body parts. To overcome these limitations, we present Being-M0.5, the first real-time, controllable VLMM that achieves state-of-the-art performance across multiple motion generation tasks. Our approach is built upon HuMo100M, the largest and most comprehensive human motion dataset to date, comprising over 5 million self-collected motion sequences, 100 million multi-task instructional instances, and detailed part-level annotations that address a critical gap in existing datasets. We introduce a novel part-aware residual quantization technique for motion tokenization that enables precise, granular control over individual body parts during generation. Extensive experimental validation demonstrates Being-M0.5's superior performance across diverse motion benchmarks, while comprehensive efficiency analysis confirms its real-time capabilities. Our contributions include design insights and detailed computational analysis to guide future development of practical motion generators. We believe that HuMo100M and Being-M0.5 represent significant advances that will accelerate the adoption of motion generation technologies in real-world applications. The project page is available at https://beingbeyond.github.io/Being-M0.5.
Abstract:With the rapid advancement of large language models (LLMs), retrieval-augmented generation (RAG) has emerged as a critical approach to supplement the inherent knowledge limitations of LLMs. However, due to the typically large volume of retrieved information, RAG tends to operate with long context lengths. From the perspective of entropy engineering, we identify unconstrained entropy growth and attention dilution due to long retrieval context as significant factors affecting RAG performance. In this paper, we propose the balanced entropy-engineered RAG (BEE-RAG) framework, which improves the adaptability of RAG systems to varying context lengths through the principle of entropy invariance. By leveraging balanced context entropy to reformulate attention dynamics, BEE-RAG separates attention sensitivity from context length, ensuring a stable entropy level. Building upon this, we introduce a zero-shot inference strategy for multi-importance estimation and a parameter-efficient adaptive fine-tuning mechanism to obtain the optimal balancing factor for different settings. Extensive experiments across multiple RAG tasks demonstrate the effectiveness of BEE-RAG.
Abstract:In visual-language model (VLM) reasoning, false positive(FP) reasoning occurs when a model generates a correct answer but follows an incorrect reasoning path. Existing methods based on specific multi-step reasoning datasets and reinforcement learning strategies, leading to high training costs and limited generalization. In this work, we propose ViFP, a general framework for enhancing visual reasoning reliability. It improves both answer accuracy and reasoning soundness by detecting FPs. ViFP tackles the limitations of dataset dependency and poor generalization by constructing sub-question templates grounded in the core dimensions of visual reasoning, such as object localization, characteristic description, and object discovery. ViFP then builds effective reasoning paths via multi-turn QA to improve reasoning accuracy. Meanwhile, ViFP dynamically analyzes the consistency of reasoning path to identify potential FPs, and introduces a targeted chain-of-thought (CoT) mechanism that adaptively guides both FP and non-FP samples. Thereby reducing logical errors in the reasoning path while preserving accuracy. Finally, we introduce a reliability evaluation metric-VoC, which integrates answer accuracy and the FP rate, providing a quantitative tool to assess whether a VLM not only answers correctly, but also reasons reliably. Our experiments on closed-source VLMs show that ViFP consistently improves performance across three datasets: A-OKVQA, OKVQA, and FVQA. On A-OKVQA, ViFP improves accuracy by up to 5.4%, surpassing the previous state-of-the-art by 4.3%, and significantly reduces the number of FPs, validating its benefits in enhancing reasoning reliability.
Abstract:Fine-tuning vision language models (VLMs) has achieved remarkable performance across various downstream tasks; yet, it requires access to model gradients through backpropagation (BP), making them unsuitable for memory-constrained, inference-only edge devices. To address this limitation, previous work has explored various BP-free fine-tuning methods. However, these approaches often rely on high-variance evolutionary strategies (ES) or zeroth-order (ZO) optimization, and often fail to achieve satisfactory performance. In this paper, we propose a hybrid Sharpness-aware Zeroth-order optimization (SharpZO) approach, specifically designed to enhance the performance of ZO VLM fine-tuning via a sharpness-aware warm-up training. SharpZO features a two-stage optimization process: a sharpness-aware ES stage that globally explores and smooths the loss landscape to construct a strong initialization, followed by a fine-grained local search via sparse ZO optimization. The entire optimization relies solely on forward passes. Detailed theoretical analysis and extensive experiments on CLIP models demonstrate that SharpZO significantly improves accuracy and convergence speed, achieving up to 7% average gain over state-of-the-art forward-only methods.
Abstract:An abstract sound is defined as a sound that does not disclose identifiable real-world sound events to a listener. Sound fusion aims to synthesize an original sound and a reference sound to generate a novel sound that exhibits auditory features beyond mere additive superposition of the sound constituents. To achieve this fusion, we employ inversion techniques that preserve essential features of the original sample while enabling controllable synthesis. We propose novel SDE and ODE inversion models based on DPMSolver++ samplers that reverse the sampling process by configuring model outputs as constants, eliminating circular dependencies incurred by noise prediction terms. Our inversion approach requires no prompt conditioning while maintaining flexible guidance during sampling.
Abstract:Anomaly detection (AD) plays a pivotal role across diverse domains, including cybersecurity, finance, healthcare, and industrial manufacturing, by identifying unexpected patterns that deviate from established norms in real-world data. Recent advancements in deep learning, specifically diffusion models (DMs), have sparked significant interest due to their ability to learn complex data distributions and generate high-fidelity samples, offering a robust framework for unsupervised AD. In this survey, we comprehensively review anomaly detection and generation with diffusion models (ADGDM), presenting a tutorial-style analysis of the theoretical foundations and practical implementations and spanning images, videos, time series, tabular, and multimodal data. Crucially, unlike existing surveys that often treat anomaly detection and generation as separate problems, we highlight their inherent synergistic relationship. We reveal how DMs enable a reinforcing cycle where generation techniques directly address the fundamental challenge of anomaly data scarcity, while detection methods provide critical feedback to improve generation fidelity and relevance, advancing both capabilities beyond their individual potential. A detailed taxonomy categorizes ADGDM methods based on anomaly scoring mechanisms, conditioning strategies, and architectural designs, analyzing their strengths and limitations. We final discuss key challenges including scalability and computational efficiency, and outline promising future directions such as efficient architectures, conditioning strategies, and integration with foundation models (e.g., visual-language models and large language models). By synthesizing recent advances and outlining open research questions, this survey aims to guide researchers and practitioners in leveraging DMs for innovative AD solutions across diverse applications.
Abstract:To address the enormous size of Large Language Models (LLMs), model compression methods, such as quantization and pruning, are often deployed, especially on edge devices. In this work, we focus on layer-wise post-training quantization and pruning. Drawing connections between activation-aware weight pruning and sparse approximation problems, and motivated by the success of Iterative Hard Thresholding (IHT), we propose a unified method for Activation-aware Weight pruning and quantization via Projected gradient descent (AWP). Our experiments demonstrate that AWP outperforms state-of-the-art LLM pruning and quantization methods. Theoretical convergence guarantees of the proposed method for pruning are also provided.
Abstract:The scarcity of large-scale classroom speech data has hindered the development of AI-driven speech models for education. Public classroom datasets remain limited, and the lack of a dedicated classroom noise corpus prevents the use of standard data augmentation techniques. In this paper, we introduce a scalable methodology for synthesizing classroom noise using game engines, a framework that extends to other domains. Using this methodology, we present SimClass, a dataset that includes both a synthesized classroom noise corpus and a simulated classroom speech dataset. The speech data is generated by pairing a public children's speech corpus with YouTube lecture videos to approximate real classroom interactions in clean conditions. Our experiments on clean and noisy speech demonstrate that SimClass closely approximates real classroom speech, making it a valuable resource for developing robust speech recognition and enhancement models.
Abstract:Group Relative Policy Optimization (GRPO) enhances policy learning by computing gradients from relative comparisons among candidate outputs that share a common input prefix. Despite its effectiveness, GRPO introduces substantial computational overhead when processing long shared prefixes, which must be redundantly encoded for each group member. This inefficiency becomes a major scalability bottleneck in long-context learning scenarios. We propose Prefix Grouper, an efficient GRPO training algorithm that eliminates redundant prefix computation via a Shared-Prefix Forward strategy. In particular, by restructuring self-attention into two parts, our method enables the shared prefix to be encoded only once, while preserving full differentiability and compatibility with end-to-end training. We provide both theoretical and empirical evidence that Prefix Grouper is training-equivalent to standard GRPO: it yields identical forward outputs and backward gradients, ensuring that the optimization dynamics and final policy performance remain unchanged. Empirically, our experiments confirm that Prefix Grouper achieves consistent results while significantly reducing the computational cost of training, particularly in long-prefix scenarios. The proposed method is fully plug-and-play: it is compatible with existing GRPO-based architectures and can be seamlessly integrated into current training pipelines as a drop-in replacement, requiring no structural modifications and only minimal changes to input construction and attention computation. Prefix Grouper enables the use of larger group sizes under the same computational budget, thereby improving the scalability of GRPO to more complex tasks and larger models. Code is now available at https://github.com/johncaged/PrefixGrouper
Abstract:The classical phase retrieval refers to the recovery of an unknown signal from its Fourier magnitudes, which is widely used in fields such as quantum mechanics, signal processing, optics, etc. The offset linear canonical transform (OLCT), which is a more general type of linear integral transform including Fourier transform (FT), fractional Fourier transform (FrFT), and linear canonical transform (LCT) as its special cases. Hence, in this paper, we focus on the uniqueness problem of phase retrieval in the framework of OLCT. First, we prove that all the nontrivial ambiguities in continuous OLCT phase retrieval can be represented by convolution operators, and demonstrate that a continuous compactly supported signal can be uniquely determined up to a global phase from its multiple magnitude-only OLCT measurements. Moreover, we investigate the nontrivial ambiguities in the discrete OLCT phase retrieval case. Furthermore, we demenstrate that a nonseparable function can be uniquely recovered from its magnitudes of short-time OLCT (STOLCT) up to a global phase. Finally, we show that signals which are bandlimited in FT or OLCT domain can be reconstructed from its sampled STOLCT magnitude measurements, up to a global phase, providing the ambiguity function of window function satisfies some mild conditions.