Logit based knowledge distillation gets less attention in recent years since feature based methods perform better in most cases. Nevertheless, we find it still has untapped potential when we re-investigate the temperature, which is a crucial hyper-parameter to soften the logit outputs. For most of the previous works, it was set as a fixed value for the entire distillation procedure. However, as the logits from different samples are distributed quite variously, it is not feasible to soften all of them to an equal degree by just a single temperature, which may make the previous work transfer the knowledge of each sample inadequately. In this paper, we restudy the hyper-parameter temperature and figure out its incapability to distill the knowledge from each sample sufficiently when it is a single value. To address this issue, we propose Normalized Knowledge Distillation (NormKD), with the purpose of customizing the temperature for each sample according to the characteristic of the sample's logit distribution. Compared to the vanilla KD, NormKD barely has extra computation or storage cost but performs significantly better on CIRAR-100 and ImageNet for image classification. Furthermore, NormKD can be easily applied to the other logit based methods and achieve better performance which can be closer to or even better than the feature based method.
Monocular 3D detection is a challenging task due to the lack of accurate 3D information. Existing approaches typically rely on geometry constraints and dense depth estimates to facilitate the learning, but often fail to fully exploit the benefits of three-dimensional feature extraction in frustum and 3D space. In this paper, we propose \textbf{OccupancyM3D}, a method of learning occupancy for monocular 3D detection. It directly learns occupancy in frustum and 3D space, leading to more discriminative and informative 3D features and representations. Specifically, by using synchronized raw sparse LiDAR point clouds, we define the space status and generate voxel-based occupancy labels. We formulate occupancy prediction as a simple classification problem and design associated occupancy losses. Resulting occupancy estimates are employed to enhance original frustum/3D features. As a result, experiments on KITTI and Waymo open datasets demonstrate that the proposed method achieves a new state of the art and surpasses other methods by a significant margin. Codes and pre-trained models will be available at \url{https://github.com/SPengLiang/OccupancyM3D}.
Transformer-based networks have achieved impressive performance in 3D point cloud understanding. However, most of them concentrate on aggregating local features, but neglect to directly model global dependencies, which results in a limited effective receptive field. Besides, how to effectively incorporate local and global components also remains challenging. To tackle these problems, we propose Asymmetric Parallel Point Transformer (APPT). Specifically, we introduce Global Pivot Attention to extract global features and enlarge the effective receptive field. Moreover, we design the Asymmetric Parallel structure to effectively integrate local and global information. Combined with these designs, APPT is able to capture features globally throughout the entire network while focusing on local-detailed features. Extensive experiments show that our method outperforms the priors and achieves state-of-the-art on several benchmarks for 3D point cloud understanding, such as 3D semantic segmentation on S3DIS, 3D shape classification on ModelNet40, and 3D part segmentation on ShapeNet.
While features of different scales are perceptually important to visual inputs, existing vision transformers do not yet take advantage of them explicitly. To this end, we first propose a cross-scale vision transformer, CrossFormer. It introduces a cross-scale embedding layer (CEL) and a long-short distance attention (LSDA). On the one hand, CEL blends each token with multiple patches of different scales, providing the self-attention module itself with cross-scale features. On the other hand, LSDA splits the self-attention module into a short-distance one and a long-distance counterpart, which not only reduces the computational burden but also keeps both small-scale and large-scale features in the tokens. Moreover, through experiments on CrossFormer, we observe another two issues that affect vision transformers' performance, i.e. the enlarging self-attention maps and amplitude explosion. Thus, we further propose a progressive group size (PGS) paradigm and an amplitude cooling layer (ACL) to alleviate the two issues, respectively. The CrossFormer incorporating with PGS and ACL is called CrossFormer++. Extensive experiments show that CrossFormer++ outperforms the other vision transformers on image classification, object detection, instance segmentation, and semantic segmentation tasks. The code will be available at: https://github.com/cheerss/CrossFormer.
Previous work on action representation learning focused on global representations for short video clips. In contrast, many practical applications, such as video alignment, strongly demand learning the intensive representation of long videos. In this paper, we introduce a new framework of contrastive action representation learning (CARL) to learn frame-wise action representation in a self-supervised or weakly-supervised manner, especially for long videos. Specifically, we introduce a simple but effective video encoder that considers both spatial and temporal context by combining convolution and transformer. Inspired by the recent massive progress in self-supervised learning, we propose a new sequence contrast loss (SCL) applied to two related views obtained by expanding a series of spatio-temporal data in two versions. One is the self-supervised version that optimizes embedding space by minimizing KL-divergence between sequence similarity of two augmented views and prior Gaussian distribution of timestamp distance. The other is the weakly-supervised version that builds more sample pairs among videos using video-level labels by dynamic time wrapping (DTW). Experiments on FineGym, PennAction, and Pouring datasets show that our method outperforms previous state-of-the-art by a large margin for downstream fine-grained action classification and even faster inference. Surprisingly, although without training on paired videos like in previous works, our self-supervised version also shows outstanding performance in video alignment and fine-grained frame retrieval tasks.
Weakly supervised semantic segmentation (WSSS) with image-level labels is a challenging task in computer vision. Mainstream approaches follow a multi-stage framework and suffer from high training costs. In this paper, we explore the potential of Contrastive Language-Image Pre-training models (CLIP) to localize different categories with only image-level labels and without any further training. To efficiently generate high-quality segmentation masks from CLIP, we propose a novel framework called CLIP-ES for WSSS. Our framework improves all three stages of WSSS with special designs for CLIP: 1) We introduce the softmax function into GradCAM and exploit the zero-shot ability of CLIP to suppress the confusion caused by non-target classes and backgrounds. Meanwhile, to take full advantage of CLIP, we re-explore text inputs under the WSSS setting and customize two text-driven strategies: sharpness-based prompt selection and synonym fusion. 2) To simplify the stage of CAM refinement, we propose a real-time class-aware attention-based affinity (CAA) module based on the inherent multi-head self-attention (MHSA) in CLIP-ViTs. 3) When training the final segmentation model with the masks generated by CLIP, we introduced a confidence-guided loss (CGL) to mitigate noise and focus on confident regions. Our proposed framework dramatically reduces the cost of training for WSSS and shows the capability of localizing objects in CLIP. Our CLIP-ES achieves SOTA performance on Pascal VOC 2012 and MS COCO 2014 while only taking 10% time of previous methods for the pseudo mask generation. Code is available at https://github.com/linyq2117/CLIP-ES.
Despite the tremendous progress of Masked Autoencoders (MAE) in developing vision tasks such as image and video, exploring MAE in large-scale 3D point clouds remains challenging due to the inherent irregularity. In contrast to previous 3D MAE frameworks, which either design a complex decoder to infer masked information from maintained regions or adopt sophisticated masking strategies, we instead propose a much simpler paradigm. The core idea is to apply a \textbf{G}enerative \textbf{D}ecoder for MAE (GD-MAE) to automatically merges the surrounding context to restore the masked geometric knowledge in a hierarchical fusion manner. In doing so, our approach is free from introducing the heuristic design of decoders and enjoys the flexibility of exploring various masking strategies. The corresponding part costs less than \textbf{12\%} latency compared with conventional methods, while achieving better performance. We demonstrate the efficacy of the proposed method on several large-scale benchmarks: Waymo, KITTI, and ONCE. Consistent improvement on downstream detection tasks illustrates strong robustness and generalization capability. Not only our method reveals state-of-the-art results, but remarkably, we achieve comparable accuracy even with \textbf{20\%} of the labeled data on the Waymo dataset. The code will be released at \url{https://github.com/Nightmare-n/GD-MAE}.
Existing neural rendering methods for creating human avatars typically either require dense input signals such as video or multi-view images, or leverage a learned prior from large-scale specific 3D human datasets such that reconstruction can be performed with sparse-view inputs. Most of these methods fail to achieve realistic reconstruction when only a single image is available. To enable the data-efficient creation of realistic animatable 3D humans, we propose ELICIT, a novel method for learning human-specific neural radiance fields from a single image. Inspired by the fact that humans can easily reconstruct the body geometry and infer the full-body clothing from a single image, we leverage two priors in ELICIT: 3D geometry prior and visual semantic prior. Specifically, ELICIT introduces the 3D body shape geometry prior from a skinned vertex-based template model (i.e., SMPL) and implements the visual clothing semantic prior with the CLIP-based pre-trained models. Both priors are used to jointly guide the optimization for creating plausible content in the invisible areas. In order to further improve visual details, we propose a segmentation-based sampling strategy that locally refines different parts of the avatar. Comprehensive evaluations on multiple popular benchmarks, including ZJU-MoCAP, Human3.6M, and DeepFashion, show that ELICIT has outperformed current state-of-the-art avatar creation methods when only a single image is available. Code will be public for reseach purpose at https://elicit3d.github.io .