Abstract:Trained on various human-authored corpora, Large Language Models (LLMs) have demonstrated a certain capability of reflecting specific human-like traits (e.g., personality or values) by prompting, benefiting applications like personalized LLMs and social simulations. However, existing methods suffer from the superficial elicitation problem: LLMs can only be steered to mimic shallow and unstable stylistic patterns, failing to embody the desired traits precisely and consistently across diverse tasks like humans. To address this challenge, we propose IROTE, a novel in-context method for stable and transferable trait elicitation. Drawing on psychological theories suggesting that traits are formed through identity-related reflection, our method automatically generates and optimizes a textual self-reflection within prompts, which comprises self-perceived experience, to stimulate LLMs' trait-driven behavior. The optimization is performed by iteratively maximizing an information-theoretic objective that enhances the connections between LLMs' behavior and the target trait, while reducing noisy redundancy in reflection without any fine-tuning, leading to evocative and compact trait reflection. Extensive experiments across three human trait systems manifest that one single IROTE-generated self-reflection can induce LLMs' stable impersonation of the target trait across diverse downstream tasks beyond simple questionnaire answering, consistently outperforming existing strong baselines.
Abstract:Subjective language understanding refers to a broad set of natural language processing tasks where the goal is to interpret or generate content that conveys personal feelings, opinions, or figurative meanings rather than objective facts. With the advent of large language models (LLMs) such as ChatGPT, LLaMA, and others, there has been a paradigm shift in how we approach these inherently nuanced tasks. In this survey, we provide a comprehensive review of recent advances in applying LLMs to subjective language tasks, including sentiment analysis, emotion recognition, sarcasm detection, humor understanding, stance detection, metaphor interpretation, intent detection, and aesthetics assessment. We begin by clarifying the definition of subjective language from linguistic and cognitive perspectives, and we outline the unique challenges posed by subjective language (e.g. ambiguity, figurativeness, context dependence). We then survey the evolution of LLM architectures and techniques that particularly benefit subjectivity tasks, highlighting why LLMs are well-suited to model subtle human-like judgments. For each of the eight tasks, we summarize task definitions, key datasets, state-of-the-art LLM-based methods, and remaining challenges. We provide comparative insights, discussing commonalities and differences among tasks and how multi-task LLM approaches might yield unified models of subjectivity. Finally, we identify open issues such as data limitations, model bias, and ethical considerations, and suggest future research directions. We hope this survey will serve as a valuable resource for researchers and practitioners interested in the intersection of affective computing, figurative language processing, and large-scale language models.
Abstract:Open-world point cloud semantic segmentation (OW-Seg) aims to predict point labels of both base and novel classes in real-world scenarios. However, existing methods rely on resource-intensive offline incremental learning or densely annotated support data, limiting their practicality. To address these limitations, we propose HOW-Seg, the first human-in-the-loop framework for OW-Seg. Specifically, we construct class prototypes, the fundamental segmentation units, directly on the query data, avoiding the prototype bias caused by intra-class distribution shifts between the support and query data. By leveraging sparse human annotations as guidance, HOW-Seg enables prototype-based segmentation for both base and novel classes. Considering the lack of granularity of initial prototypes, we introduce a hierarchical prototype disambiguation mechanism to refine ambiguous prototypes, which correspond to annotations of different classes. To further enrich contextual awareness, we employ a dense conditional random field (CRF) upon the refined prototypes to optimize their label assignments. Through iterative human feedback, HOW-Seg dynamically improves its predictions, achieving high-quality segmentation for both base and novel classes. Experiments demonstrate that with sparse annotations (e.g., one-novel-class-one-click), HOW-Seg matches or surpasses the state-of-the-art generalized few-shot segmentation (GFS-Seg) method under the 5-shot setting. When using advanced backbones (e.g., Stratified Transformer) and denser annotations (e.g., 10 clicks per sub-scene), HOW-Seg achieves 85.27% mIoU on S3DIS and 66.37% mIoU on ScanNetv2, significantly outperforming alternatives.
Abstract:Large Language Models (LLMs) exhibit considerable promise in financial applications; however, prevailing models frequently demonstrate limitations when confronted with scenarios that necessitate sophisticated reasoning capabilities, stringent trustworthiness criteria, and efficient adaptation to domain-specific requirements. We introduce the Agentar-Fin-R1 series of financial large language models (8B and 32B parameters), specifically engineered based on the Qwen3 foundation model to enhance reasoning capabilities, reliability, and domain specialization for financial applications. Our optimization approach integrates a high-quality, systematic financial task label system with a comprehensive multi-layered trustworthiness assurance framework. This framework encompasses high-quality trustworthy knowledge engineering, multi-agent trustworthy data synthesis, and rigorous data validation governance. Through label-guided automated difficulty-aware optimization, tow-stage training pipeline, and dynamic attribution systems, we achieve substantial improvements in training efficiency. Our models undergo comprehensive evaluation on mainstream financial benchmarks including Fineva, FinEval, and FinanceIQ, as well as general reasoning datasets such as MATH-500 and GPQA-diamond. To thoroughly assess real-world deployment capabilities, we innovatively propose the Finova evaluation benchmark, which focuses on agent-level financial reasoning and compliance verification. Experimental results demonstrate that Agentar-Fin-R1 not only achieves state-of-the-art performance on financial tasks but also exhibits exceptional general reasoning capabilities, validating its effectiveness as a trustworthy solution for high-stakes financial applications. The Finova bench is available at https://github.com/antgroup/Finova.
Abstract:Multipactor is a nonlinear electron avalanche phenomenon that can severely impair the performance of high-power radio frequency (RF) devices and accelerator systems. Accurate prediction of multipactor susceptibility across different materials and operational regimes remains a critical yet computationally intensive challenge in accelerator component design and RF engineering. This study presents the first application of supervised machine learning (ML) for predicting multipactor susceptibility in two-surface planar geometries. A simulation-derived dataset spanning six distinct secondary electron yield (SEY) material profiles is used to train regression models - including Random Forest (RF), Extra Trees (ET), Extreme Gradient Boosting (XGBoost), and funnel-structured Multilayer Perceptrons (MLPs) - to predict the time-averaged electron growth rate, ${\delta}_{avg}$. Performance is evaluated using Intersection over Union (IoU), Structural Similarity Index (SSIM), and Pearson correlation coefficient. Tree-based models consistently outperform MLPs in generalizing across disjoint material domains. MLPs trained using a scalarized objective function that combines IoU and SSIM during Bayesian hyperparameter optimization with 5-fold cross-validation outperform those trained with single-objective loss functions. Principal Component Analysis reveals that performance degradation for certain materials stems from disjoint feature-space distributions, underscoring the need for broader dataset coverage. This study demonstrates both the promise and limitations of ML-based multipactor prediction and lays the groundwork for accelerated, data-driven modeling in advanced RF and accelerator system design.
Abstract:We present GLM-4.1V-Thinking, a vision-language model (VLM) designed to advance general-purpose multimodal understanding and reasoning. In this report, we share our key findings in the development of the reasoning-centric training framework. We first develop a capable vision foundation model with significant potential through large-scale pre-training, which arguably sets the upper bound for the final performance. We then propose Reinforcement Learning with Curriculum Sampling (RLCS) to unlock the full potential of the model, leading to comprehensive capability enhancement across a diverse range of tasks, including STEM problem solving, video understanding, content recognition, coding, grounding, GUI-based agents, and long document understanding. We open-source GLM-4.1V-9B-Thinking, which achieves state-of-the-art performance among models of comparable size. In a comprehensive evaluation across 28 public benchmarks, our model outperforms Qwen2.5-VL-7B on nearly all tasks and achieves comparable or even superior performance on 18 benchmarks relative to the significantly larger Qwen2.5-VL-72B. Notably, GLM-4.1V-9B-Thinking also demonstrates competitive or superior performance compared to closed-source models such as GPT-4o on challenging tasks including long document understanding and STEM reasoning, further underscoring its strong capabilities. Code, models and more information are released at https://github.com/THUDM/GLM-4.1V-Thinking.
Abstract:Can multi-modal large models (MLMs) that can ``see'' an image be said to ``understand'' it? Drawing inspiration from Searle's Chinese Room, we propose the \textbf{Visual Room} argument: a system may process and describe every detail of visual inputs by following algorithmic rules, without genuinely comprehending the underlying intention. This dilemma challenges the prevailing assumption that perceptual mastery implies genuine understanding. In implementation, we introduce a two-tier evaluation framework spanning perception and cognition. The perception component evaluates whether MLMs can accurately capture the surface-level details of visual contents, where the cognitive component examines their ability to infer sarcasm polarity. To support this framework, We further introduce a high-quality multi-modal sarcasm dataset comprising both 924 static images and 100 dynamic videos. All sarcasm labels are annotated by the original authors and verified by independent reviewers to ensure clarity and consistency. We evaluate eight state-of-the-art (SoTA) MLMs. Our results highlight three key findings: (1) MLMs perform well on perception tasks; (2) even with correct perception, models exhibit an average error rate of ~16.1\% in sarcasm understanding, revealing a significant gap between seeing and understanding; (3) error analysis attributes this gap to deficiencies in emotional reasoning, commonsense inference, and context alignment. This work provides empirical grounding for the proposed Visual Room argument and offers a new evaluation paradigm for MLMs.
Abstract:Emotion understanding includes basic tasks (e.g., sentiment/emotion classification) and advanced tasks (e.g., sarcasm/humor detection). Current methods rely on fixed-length CoT reasoning, failing to adapt to the varying complexity of emotions. We propose a task-adaptive reasoning framework that employs DeepSeek-R1 to generate variable-length reasoning chains for different emotion tasks. By combining fine-tuning with reinforcement learning, we design a composite reward function that balances four objectives: prediction accuracy, adaptive reasoning depth control, structural diversity in reasoning paths, and suppression of repetitive logic. This approach achieves dynamic context-sensitive inference while enabling LLMs to autonomously develop deep reasoning capabilities. Experimental results demonstrate consistent improvements in both Acc and F1 scores across four tasks: emotion, sentiment, humor, and sarcasm. Notably, peak enhancements reached 3.56% F1 (2.76% Acc) for basic tasks and 37.95% F1 (23.14% Acc) for advanced tasks. Our work bridges rigid CoT reasoning and emotional complexity through adaptive-depth analysis.
Abstract:This paper introduces a new control signal for facial motion generation: timeline control. Compared to audio and text signals, timelines provide more fine-grained control, such as generating specific facial motions with precise timing. Users can specify a multi-track timeline of facial actions arranged in temporal intervals, allowing precise control over the timing of each action. To model the timeline control capability, We first annotate the time intervals of facial actions in natural facial motion sequences at a frame-level granularity. This process is facilitated by Toeplitz Inverse Covariance-based Clustering to minimize human labor. Based on the annotations, we propose a diffusion-based generation model capable of generating facial motions that are natural and accurately aligned with input timelines. Our method supports text-guided motion generation by using ChatGPT to convert text into timelines. Experimental results show that our method can annotate facial action intervals with satisfactory accuracy, and produces natural facial motions accurately aligned with timelines.
Abstract:Large language models (LLMs) have demonstrated exceptional performance in understanding and generating semantic patterns, making them promising candidates for sequential recommendation tasks. However, when combined with conventional recommendation models (CRMs), LLMs often face challenges related to high inference costs and static knowledge transfer methods. In this paper, we propose a novel mutual distillation framework, LLMD4Rec, that fosters dynamic and bidirectional knowledge exchange between LLM-centric and CRM-based recommendation systems. Unlike traditional unidirectional distillation methods, LLMD4Rec enables iterative optimization by alternately refining both models, enhancing the semantic understanding of CRMs and enriching LLMs with collaborative signals from user-item interactions. By leveraging sample-wise adaptive weighting and aligning output distributions, our approach eliminates the need for additional parameters while ensuring effective knowledge transfer. Extensive experiments on real-world datasets demonstrate that LLMD4Rec significantly improves recommendation accuracy across multiple benchmarks without increasing inference costs. This method provides a scalable and efficient solution for combining the strengths of both LLMs and CRMs in sequential recommendation systems.