Abstract:Generative modelling has seen significant advances through simulation-free paradigms such as Flow Matching, and in particular, the MeanFlow framework, which replaces instantaneous velocity fields with average velocities to enable efficient single-step sampling. In this work, we introduce a theoretical study on Second-Order MeanFlow, a novel extension that incorporates average acceleration fields into the MeanFlow objective. We first establish the feasibility of our approach by proving that the average acceleration satisfies a generalized consistency condition analogous to first-order MeanFlow, thereby supporting stable, one-step sampling and tractable loss functions. We then characterize its expressivity via circuit complexity analysis, showing that under mild assumptions, the Second-Order MeanFlow sampling process can be implemented by uniform threshold circuits within the $\mathsf{TC}^0$ class. Finally, we derive provably efficient criteria for scalable implementation by leveraging fast approximate attention computations: we prove that attention operations within the Second-Order MeanFlow architecture can be approximated to within $1/\mathrm{poly}(n)$ error in time $n^{2+o(1)}$. Together, these results lay the theoretical foundation for high-order flow matching models that combine rich dynamics with practical sampling efficiency.
Abstract:Text-to-video (T2V) models have shown remarkable performance in generating visually reasonable scenes, while their capability to leverage world knowledge for ensuring semantic consistency and factual accuracy remains largely understudied. In response to this challenge, we propose T2VWorldBench, the first systematic evaluation framework for evaluating the world knowledge generation abilities of text-to-video models, covering 6 major categories, 60 subcategories, and 1,200 prompts across a wide range of domains, including physics, nature, activity, culture, causality, and object. To address both human preference and scalable evaluation, our benchmark incorporates both human evaluation and automated evaluation using vision-language models (VLMs). We evaluated the 10 most advanced text-to-video models currently available, ranging from open source to commercial models, and found that most models are unable to understand world knowledge and generate truly correct videos. These findings point out a critical gap in the capability of current text-to-video models to leverage world knowledge, providing valuable research opportunities and entry points for constructing models with robust capabilities for commonsense reasoning and factual generation.
Abstract:Large Reasoning Models (LRMs) have become a central focus in today's large language model (LLM) research, where models are designed to output a step-by-step thinking process before arriving at a final answer to handle complex reasoning tasks. Despite their promise, recent empirical studies (e.g., [Shojaee et al., 2025] from Apple) suggest that this thinking process may not actually enhance reasoning ability, where LLMs without explicit reasoning actually outperform LRMs on tasks with low or high complexity. In this work, we revisit these findings and investigate whether the limitations of LRMs persist when tool augmentations are introduced. We incorporate two types of tools, Python interpreters and scratchpads, and evaluate three representative LLMs and their LRM counterparts on Apple's benchmark reasoning puzzles. Our results show that, with proper tool use, LRMs consistently outperform their non-reasoning counterparts across all levels of task complexity. These findings challenge the recent narrative that reasoning is an illusion and highlight the potential of tool-augmented LRMs for solving complex problems.
Abstract:We study the computational limits of learning $k$-bit Boolean functions (specifically, $\mathrm{AND}$, $\mathrm{OR}$, and their noisy variants), using a minimalist single-head softmax-attention mechanism, where $k=\Theta(d)$ relevant bits are selected from $d$ inputs. We show that these simple $\mathrm{AND}$ and $\mathrm{OR}$ functions are unsolvable with a single-head softmax-attention mechanism alone. However, with teacher forcing, the same minimalist attention is capable of solving them. These findings offer two key insights: Architecturally, solving these Boolean tasks requires only minimalist attention, without deep Transformer blocks or FFNs. Methodologically, one gradient descent update with supervision suffices and replaces the multi-step Chain-of-Thought (CoT) reasoning scheme of [Kim and Suzuki, ICLR 2025] for solving Boolean problems. Together, the bounds expose a fundamental gap between what this minimal architecture achieves under ideal supervision and what is provably impossible under standard training.
Abstract:Attention mechanisms lie at the heart of modern large language models (LLMs). Straightforward algorithms for forward and backward (gradient) computation take quadratic time, and a line of work initiated by [Alman and Song NeurIPS 2023] and [Alman and Song NeurIPS 2024] has shown that quadratic time is necessary unless the model weights are small, in which case almost linear time algorithms are possible. In this paper, we show that large weights are necessary to avoid a strong preclusion to representational strength we call layer collapse, which means that the entire network can be approximated well by a network with only a single layer. Thus, the quadratic running time of attention is unavoidable for expressive transformers. The notion of layer collapse that we introduce is a variant on the notion of rank collapse from the work of [Dong, Cordonnier, and Loukas ICML 2021]. They showed that in Self Attention Networks with small weights and with skip connections, rank collapse must occur. This is typically interpreted as justifying the necessity of skip connections in expressive networks. However, our result shows that even with skip connections, if the weights are small, then layer collapse still occurs. Thus, only large weights, and not skip connections, can prevent these representational weaknesses.
Abstract:The transformer architecture has been widely applied to many machine learning tasks. A main bottleneck in the time to perform transformer computations is a task called attention computation. [Alman and Song, NeurIPS 2023] have shown that in the bounded entry regime, there is an almost linear time algorithm to approximate the attention computation. They also proved that the bounded entry assumption is necessary for a fast algorithm assuming the popular Strong Exponential Time Hypothesis. A new version of transformer which uses position embeddings has recently been very successful. At a high level, position embedding enables the model to capture the correlations between tokens while taking into account their position in the sequence. Perhaps the most popular and effective version is Rotary Position Embedding (RoPE), which was proposed by [Su, Lu, Pan, Murtadha, Wen, and Liu, Neurocomputing 2024]. A main downside of RoPE is that it complicates the attention computation problem, so that previous techniques for designing almost linear time algorithms no longer seem to work. In this paper, we show how to overcome this issue, and give a new algorithm to compute the RoPE attention in almost linear time in the bounded entry regime. (Again, known lower bounds imply that bounded entries are necessary.) Our new algorithm combines two techniques in a novel way: the polynomial method, which was used in prior fast attention algorithms, and the Fast Fourier Transform.
Abstract:Thanks to recent advancements in scalable deep architectures and large-scale pretraining, text-to-video generation has achieved unprecedented capabilities in producing high-fidelity, instruction-following content across a wide range of styles, enabling applications in advertising, entertainment, and education. However, these models' ability to render precise on-screen text, such as captions or mathematical formulas, remains largely untested, posing significant challenges for applications requiring exact textual accuracy. In this work, we introduce T2VTextBench, the first human-evaluation benchmark dedicated to evaluating on-screen text fidelity and temporal consistency in text-to-video models. Our suite of prompts integrates complex text strings with dynamic scene changes, testing each model's ability to maintain detailed instructions across frames. We evaluate ten state-of-the-art systems, ranging from open-source solutions to commercial offerings, and find that most struggle to generate legible, consistent text. These results highlight a critical gap in current video generators and provide a clear direction for future research aimed at enhancing textual manipulation in video synthesis.
Abstract:Text-to-video generative models have made significant strides in recent years, producing high-quality videos that excel in both aesthetic appeal and accurate instruction following, and have become central to digital art creation and user engagement online. Yet, despite these advancements, their ability to respect fundamental physical laws remains largely untested: many outputs still violate basic constraints such as rigid-body collisions, energy conservation, and gravitational dynamics, resulting in unrealistic or even misleading content. Existing physical-evaluation benchmarks typically rely on automatic, pixel-level metrics applied to simplistic, life-scenario prompts, and thus overlook both human judgment and first-principles physics. To fill this gap, we introduce \textbf{T2VPhysBench}, a first-principled benchmark that systematically evaluates whether state-of-the-art text-to-video systems, both open-source and commercial, obey twelve core physical laws including Newtonian mechanics, conservation principles, and phenomenological effects. Our benchmark employs a rigorous human evaluation protocol and includes three targeted studies: (1) an overall compliance assessment showing that all models score below 0.60 on average in each law category; (2) a prompt-hint ablation revealing that even detailed, law-specific hints fail to remedy physics violations; and (3) a counterfactual robustness test demonstrating that models often generate videos that explicitly break physical rules when so instructed. The results expose persistent limitations in current architectures and offer concrete insights for guiding future research toward truly physics-aware video generation.
Abstract:We establish the universal approximation capability of single-layer, single-head self- and cross-attention mechanisms with minimal attached structures. Our key insight is to interpret single-head attention as an input domain-partition mechanism that assigns distinct values to subregions. This allows us to engineer the attention weights such that this assignment imitates the target function. Building on this, we prove that a single self-attention layer, preceded by sum-of-linear transformations, is capable of approximating any continuous function on a compact domain under the $L_\infty$-norm. Furthermore, we extend this construction to approximate any Lebesgue integrable function under $L_p$-norm for $1\leq p <\infty$. Lastly, we also extend our techniques and show that, for the first time, single-head cross-attention achieves the same universal approximation guarantees.
Abstract:Direct Preference Optimization (DPO), which aligns models with human preferences through win/lose data pairs, has achieved remarkable success in language and image generation. However, applying DPO to video diffusion models faces critical challenges: (1) Data inefficiency. Generating thousands of videos per DPO iteration incurs prohibitive costs; (2) Evaluation uncertainty. Human annotations suffer from subjective bias, and automated discriminators fail to detect subtle temporal artifacts like flickering or motion incoherence. To address these, we propose a discriminator-free video DPO framework that: (1) Uses original real videos as win cases and their edited versions (e.g., reversed, shuffled, or noise-corrupted clips) as lose cases; (2) Trains video diffusion models to distinguish and avoid artifacts introduced by editing. This approach eliminates the need for costly synthetic video comparisons, provides unambiguous quality signals, and enables unlimited training data expansion through simple editing operations. We theoretically prove the framework's effectiveness even when real videos and model-generated videos follow different distributions. Experiments on CogVideoX demonstrate the efficiency of the proposed method.