Victor
Abstract:As LLMs are increasingly deployed in real-world applications, ensuring their ability to refuse malicious prompts, especially jailbreak attacks, is essential for safe and reliable use. Recently, activation steering has emerged as an effective approach for enhancing LLM safety by adding a refusal direction vector to internal activations of LLMs during inference, which will further induce the refusal behaviors of LLMs. However, indiscriminately applying activation steering fundamentally suffers from the trade-off between safety and utility, since the same steering vector can also lead to over-refusal and degraded performance on benign prompts. Although prior efforts, such as vector calibration and conditional steering, have attempted to mitigate this trade-off, their lack of theoretical grounding limits their robustness and effectiveness. To better address the trade-off between safety and utility, we present a theoretically grounded and empirically effective activation steering method called AlphaSteer. Specifically, it considers activation steering as a learnable process with two principled learning objectives: utility preservation and safety enhancement. For utility preservation, it learns to construct a nearly zero vector for steering benign data, with the null-space constraints. For safety enhancement, it learns to construct a refusal direction vector for steering malicious data, with the help of linear regression. Experiments across multiple jailbreak attacks and utility benchmarks demonstrate the effectiveness of AlphaSteer, which significantly improves the safety of LLMs without compromising general capabilities. Our codes are available at https://github.com/AlphaLab-USTC/AlphaSteer.
Abstract:We propose the LCB-CV-UNet to tackle performance degradation caused by High Dynamic Range (HDR) radar signals. Initially, a hardware-efficient, plug-and-play module named Logarithmic Connect Block (LCB) is proposed as a phase coherence preserving solution to address the inherent challenges in handling HDR features. Then, we propose the Dual Hybrid Dataset Construction method to generate a semi-synthetic dataset, approximating typical HDR signal scenarios with adjustable target distributions. Simulation results show about 1% total detection probability improvement with under 0.9% computational complexity added compared with the baseline. Furthermore, it excels 5% over the baseline at the range in 11-13 dB signal-to-noise ratio typical for urban targets. Finally, the real experiment validates the practicality of our model.
Abstract:Diffusion models have shown significant potential in generating oracle items that best match user preference with guidance from user historical interaction sequences. However, the quality of guidance is often compromised by unpredictable missing data in observed sequence, leading to suboptimal item generation. Since missing data is uncertain in both occurrence and content, recovering it is impractical and may introduce additional errors. To tackle this challenge, we propose a novel dual-side Thompson sampling-based Diffusion Model (TDM), which simulates extra missing data in the guidance signals and allows diffusion models to handle existing missing data through extrapolation. To preserve user preference evolution in sequences despite extra missing data, we introduce Dual-side Thompson Sampling to implement simulation with two probability models, sampling by exploiting user preference from both item continuity and sequence stability. TDM strategically removes items from sequences based on dual-side Thompson sampling and treats these edited sequences as guidance for diffusion models, enhancing models' robustness to missing data through consistency regularization. Additionally, to enhance the generation efficiency, TDM is implemented under the denoising diffusion implicit models to accelerate the reverse process. Extensive experiments and theoretical analysis validate the effectiveness of TDM in addressing missing data in sequential recommendations.
Abstract:Large language models have demonstrated impressive reasoning capabilities but are inherently limited by their knowledge reservoir. Retrieval-augmented reasoning mitigates this limitation by allowing LLMs to query external resources, but existing methods often retrieve irrelevant or noisy information, hindering accurate reasoning. In this paper, we propose AutoRefine, a reinforcement learning post-training framework that adopts a new ``search-and-refine-during-think'' paradigm. AutoRefine introduces explicit knowledge refinement steps between successive search calls, enabling the model to iteratively filter, distill, and organize evidence before generating an answer. Furthermore, we incorporate tailored retrieval-specific rewards alongside answer correctness rewards using group relative policy optimization. Experiments on single-hop and multi-hop QA benchmarks demonstrate that AutoRefine significantly outperforms existing approaches, particularly in complex, multi-hop reasoning scenarios. Detailed analysis shows that AutoRefine issues frequent, higher-quality searches and synthesizes evidence effectively.
Abstract:Recent advancements in sequential recommendation have underscored the potential of Large Language Models (LLMs) for enhancing item embeddings. However, existing approaches face three key limitations: 1) the degradation of the semantic space when high-dimensional language embeddings are mapped to lower-dimensional ID embeddings, 2) the underutilization of language embeddings, and 3) the reliance on additional trainable parameters, such as an adapter, to bridge the gap between the semantic and behavior spaces. In this paper, we introduce AlphaFuse, a simple but effective language-guided learning strategy that addresses these challenges by learning ID embeddings within the null space of language embeddings. Specifically, we decompose the semantic space of language embeddings via Singular Value Decomposition (SVD), distinguishing it into a semantic-rich row space and a semantic-sparse null space. Collaborative signals are then injected into the null space, while preserving the rich semantics of the row space. AlphaFuse prevents degradation of the semantic space, integrates the retained language embeddings into the final item embeddings, and eliminates the need for auxiliary trainable modules, enabling seamless adaptation to any sequential recommendation framework. We validate the effectiveness and flexibility of AlphaFuse through extensive experiments on three benchmark datasets, including cold-start user and long-tail settings, showcasing significant improvements in both discriminative and diffusion-based generative sequential recommenders. Our codes and datasets are available at https://github.com/Hugo-Chinn/AlphaFuse.
Abstract:Prompt engineering enables Large Language Models (LLMs) to perform a variety of tasks. However, lengthy prompts significantly increase computational complexity and economic costs. To address this issue, we study six prompt compression methods for LLMs, aiming to reduce prompt length while maintaining LLM response quality. In this paper, we present a comprehensive analysis covering aspects such as generation performance, model hallucinations, efficacy in multimodal tasks, word omission analysis, and more. We evaluate these methods across 13 datasets, including news, scientific articles, commonsense QA, math QA, long-context QA, and VQA datasets. Our experiments reveal that prompt compression has a greater impact on LLM performance in long contexts compared to short ones. In the Longbench evaluation, moderate compression even enhances LLM performance. Our code and data is available at https://github.com/3DAgentWorld/Toolkit-for-Prompt-Compression.
Abstract:The remarkable success of Large Language Models (LLMs) has illuminated a promising pathway toward achieving Artificial General Intelligence for both academic and industrial communities, owing to their unprecedented performance across various applications. As LLMs continue to gain prominence in both research and commercial domains, their security and safety implications have become a growing concern, not only for researchers and corporations but also for every nation. Currently, existing surveys on LLM safety primarily focus on specific stages of the LLM lifecycle, e.g., deployment phase or fine-tuning phase, lacking a comprehensive understanding of the entire "lifechain" of LLMs. To address this gap, this paper introduces, for the first time, the concept of "full-stack" safety to systematically consider safety issues throughout the entire process of LLM training, deployment, and eventual commercialization. Compared to the off-the-shelf LLM safety surveys, our work demonstrates several distinctive advantages: (I) Comprehensive Perspective. We define the complete LLM lifecycle as encompassing data preparation, pre-training, post-training, deployment and final commercialization. To our knowledge, this represents the first safety survey to encompass the entire lifecycle of LLMs. (II) Extensive Literature Support. Our research is grounded in an exhaustive review of over 800+ papers, ensuring comprehensive coverage and systematic organization of security issues within a more holistic understanding. (III) Unique Insights. Through systematic literature analysis, we have developed reliable roadmaps and perspectives for each chapter. Our work identifies promising research directions, including safety in data generation, alignment techniques, model editing, and LLM-based agent systems. These insights provide valuable guidance for researchers pursuing future work in this field.
Abstract:Preference alignment through Direct Preference Optimization (DPO) has demonstrated significant effectiveness in aligning multimodal large language models (MLLMs) with human preferences. However, existing methods focus primarily on language preferences while neglecting the critical visual context. In this paper, we propose an Adaptive Vision-enhanced Preference optimization (AdaViP) that addresses these limitations through two key innovations: (1) vision-based preference pair construction, which integrates multiple visual foundation models to strategically remove key visual elements from the image, enhancing MLLMs' sensitivity to visual details; and (2) adaptive preference optimization that dynamically balances vision- and language-based preferences for more accurate alignment. Extensive evaluations across different benchmarks demonstrate our effectiveness. Notably, our AdaViP-7B achieves 93.7% and 96.4% reductions in response-level and mentioned-level hallucination respectively on the Object HalBench, significantly outperforming current state-of-the-art methods.
Abstract:Current multi-modal object re-identification approaches based on large-scale pre-trained backbones (i.e., ViT) have displayed remarkable progress and achieved excellent performance. However, these methods usually adopt the standard full fine-tuning paradigm, which requires the optimization of considerable backbone parameters, causing extensive computational and storage requirements. In this work, we propose an efficient prompt-tuning framework tailored for multi-modal object re-identification, dubbed DMPT, which freezes the main backbone and only optimizes several newly added decoupled modality-aware parameters. Specifically, we explicitly decouple the visual prompts into modality-specific prompts which leverage prior modality knowledge from a powerful text encoder and modality-independent semantic prompts which extract semantic information from multi-modal inputs, such as visible, near-infrared, and thermal-infrared. Built upon the extracted features, we further design a Prompt Inverse Bind (PromptIBind) strategy that employs bind prompts as a medium to connect the semantic prompt tokens of different modalities and facilitates the exchange of complementary multi-modal information, boosting final re-identification results. Experimental results on multiple common benchmarks demonstrate that our DMPT can achieve competitive results to existing state-of-the-art methods while requiring only 6.5% fine-tuning of the backbone parameters.
Abstract:This report presents UniAnimate-DiT, an advanced project that leverages the cutting-edge and powerful capabilities of the open-source Wan2.1 model for consistent human image animation. Specifically, to preserve the robust generative capabilities of the original Wan2.1 model, we implement Low-Rank Adaptation (LoRA) technique to fine-tune a minimal set of parameters, significantly reducing training memory overhead. A lightweight pose encoder consisting of multiple stacked 3D convolutional layers is designed to encode motion information of driving poses. Furthermore, we adopt a simple concatenation operation to integrate the reference appearance into the model and incorporate the pose information of the reference image for enhanced pose alignment. Experimental results show that our approach achieves visually appearing and temporally consistent high-fidelity animations. Trained on 480p (832x480) videos, UniAnimate-DiT demonstrates strong generalization capabilities to seamlessly upscale to 720P (1280x720) during inference. The training and inference code is publicly available at https://github.com/ali-vilab/UniAnimate-DiT.