Frank
Abstract:Graph-based RAG methods like GraphRAG have shown promising global understanding of the knowledge base by constructing hierarchical entity graphs. However, they often suffer from inefficiency and rely on manually pre-defined query modes, limiting practical use. In this paper, we propose E^2GraphRAG, a streamlined graph-based RAG framework that improves both Efficiency and Effectiveness. During the indexing stage, E^2GraphRAG constructs a summary tree with large language models and an entity graph with SpaCy based on document chunks. We then construct bidirectional indexes between entities and chunks to capture their many-to-many relationships, enabling fast lookup during both local and global retrieval. For the retrieval stage, we design an adaptive retrieval strategy that leverages the graph structure to retrieve and select between local and global modes. Experiments show that E^2GraphRAG achieves up to 10 times faster indexing than GraphRAG and 100 times speedup over LightRAG in retrieval while maintaining competitive QA performance.
Abstract:Predicting crash events is crucial for understanding crash distributions and their contributing factors, thereby enabling the design of proactive traffic safety policy interventions. However, existing methods struggle to interpret the complex interplay among various sources of traffic crash data, including numeric characteristics, textual reports, crash imagery, environmental conditions, and driver behavior records. As a result, they often fail to capture the rich semantic information and intricate interrelationships embedded in these diverse data sources, limiting their ability to identify critical crash risk factors. In this research, we propose TrafficSafe, a framework that adapts LLMs to reframe crash prediction and feature attribution as text-based reasoning. A multi-modal crash dataset including 58,903 real-world reports together with belonged infrastructure, environmental, driver, and vehicle information is collected and textualized into TrafficSafe Event Dataset. By customizing and fine-tuning LLMs on this dataset, the TrafficSafe LLM achieves a 42% average improvement in F1-score over baselines. To interpret these predictions and uncover contributing factors, we introduce TrafficSafe Attribution, a sentence-level feature attribution framework enabling conditional risk analysis. Findings show that alcohol-impaired driving is the leading factor in severe crashes, with aggressive and impairment-related behaviors having nearly twice the contribution for severe crashes compared to other driver behaviors. Furthermore, TrafficSafe Attribution highlights pivotal features during model training, guiding strategic crash data collection for iterative performance improvements. The proposed TrafficSafe offers a transformative leap in traffic safety research, providing a blueprint for translating advanced AI technologies into responsible, actionable, and life-saving outcomes.
Abstract:Previous text-to-image diffusion models typically employ supervised fine-tuning (SFT) to enhance pre-trained base models. However, this approach primarily minimizes the loss of mean squared error (MSE) at the pixel level, neglecting the need for global optimization at the image level, which is crucial for achieving high perceptual quality and structural coherence. In this paper, we introduce Self-sUpervised Direct preference Optimization (SUDO), a novel paradigm that optimizes both fine-grained details at the pixel level and global image quality. By integrating direct preference optimization into the model, SUDO generates preference image pairs in a self-supervised manner, enabling the model to prioritize global-level learning while complementing the pixel-level MSE loss. As an effective alternative to supervised fine-tuning, SUDO can be seamlessly applied to any text-to-image diffusion model. Importantly, it eliminates the need for costly data collection and annotation efforts typically associated with traditional direct preference optimization methods. Through extensive experiments on widely-used models, including Stable Diffusion 1.5 and XL, we demonstrate that SUDO significantly enhances both global and local image quality. The codes are provided at \href{https://github.com/SPengLiang/SUDO}{this link}.
Abstract:Large language models (LLMs) have demonstrated transformative potential across various domains, yet they face significant challenges in knowledge integration and complex problem reasoning, often leading to hallucinations and unreliable outputs. Retrieval-Augmented Generation (RAG) has emerged as a promising solution to enhance LLMs accuracy by incorporating external knowledge. However, traditional RAG systems struggle with processing complex relational information and multi-step reasoning, limiting their effectiveness in advanced problem-solving tasks. To address these limitations, we propose CogGRAG, a cognition inspired graph-based RAG framework, designed to improve LLMs performance in Knowledge Graph Question Answering (KGQA). Inspired by the human cognitive process of decomposing complex problems and performing self-verification, our framework introduces a three-stage methodology: decomposition, retrieval, and reasoning with self-verification. By integrating these components, CogGRAG enhances the accuracy of LLMs in complex problem solving. We conduct systematic experiments with three LLM backbones on four benchmark datasets, where CogGRAG outperforms the baselines.
Abstract:The rapid growth of social media platforms has raised significant concerns regarding online content toxicity. When Large Language Models (LLMs) are used for toxicity detection, two key challenges emerge: 1) the absence of domain-specific toxic knowledge leads to false negatives; 2) the excessive sensitivity of LLMs to toxic speech results in false positives, limiting freedom of speech. To address these issues, we propose a novel method called MetaTox, leveraging graph search on a meta-toxic knowledge graph to enhance hatred and toxicity detection. First, we construct a comprehensive meta-toxic knowledge graph by utilizing LLMs to extract toxic information through a three-step pipeline, with toxic benchmark datasets serving as corpora. Second, we query the graph via retrieval and ranking processes to supplement accurate, relevant toxic knowledge. Extensive experiments and in-depth case studies across multiple datasets demonstrate that our MetaTox significantly decreases the false positive rate while boosting overall toxicity detection performance. Our code will be available soon.
Abstract:Recently, 3D generative domain adaptation has emerged to adapt the pre-trained generator to other domains without collecting massive datasets and camera pose distributions. Typically, they leverage large-scale pre-trained text-to-image diffusion models to synthesize images for the target domain and then fine-tune the 3D model. However, they suffer from the tedious pipeline of data generation, which inevitably introduces pose bias between the source domain and synthetic dataset. Furthermore, they are not generalized to support one-shot image-guided domain adaptation, which is more challenging due to the more severe pose bias and additional identity bias introduced by the single image reference. To address these issues, we propose GCA-3D, a generalized and consistent 3D domain adaptation method without the intricate pipeline of data generation. Different from previous pipeline methods, we introduce multi-modal depth-aware score distillation sampling loss to efficiently adapt 3D generative models in a non-adversarial manner. This multi-modal loss enables GCA-3D in both text prompt and one-shot image prompt adaptation. Besides, it leverages per-instance depth maps from the volume rendering module to mitigate the overfitting problem and retain the diversity of results. To enhance the pose and identity consistency, we further propose a hierarchical spatial consistency loss to align the spatial structure between the generated images in the source and target domain. Experiments demonstrate that GCA-3D outperforms previous methods in terms of efficiency, generalization, pose accuracy, and identity consistency.
Abstract:Cloth-changing person re-identification is a subject closer to the real world, which focuses on solving the problem of person re-identification after pedestrians change clothes. The primary challenge in this field is to overcome the complex interplay between intra-class and inter-class variations and to identify features that remain unaffected by changes in appearance. Sufficient data collection for model training would significantly aid in addressing this problem. However, it is challenging to gather diverse datasets in practice. Current methods focus on implicitly learning identity information from the original image or introducing additional auxiliary models, which are largely limited by the quality of the image and the performance of the additional model. To address these issues, inspired by prompt learning, we propose a novel multiple information prompt learning (MIPL) scheme for cloth-changing person ReID, which learns identity robust features through the common prompt guidance of multiple messages. Specifically, the clothing information stripping (CIS) module is designed to decouple the clothing information from the original RGB image features to counteract the influence of clothing appearance. The Bio-guided attention (BGA) module is proposed to increase the learning intensity of the model for key information. A dual-length hybrid patch (DHP) module is employed to make the features have diverse coverage to minimize the impact of feature bias. Extensive experiments demonstrate that the proposed method outperforms all state-of-the-art methods on the LTCC, Celeb-reID, Celeb-reID-light, and CSCC datasets, achieving rank-1 scores of 74.8%, 73.3%, 66.0%, and 88.1%, respectively. When compared to AIM (CVPR23), ACID (TIP23), and SCNet (MM23), MIPL achieves rank-1 improvements of 11.3%, 13.8%, and 7.9%, respectively, on the PRCC dataset.
Abstract:With the growing complexity of fact verification tasks, the concern with "thoughtful" reasoning capabilities is increasing. However, recent fact verification benchmarks mainly focus on checking a narrow scope of semantic factoids within claims and lack an explicit logical reasoning process. In this paper, we introduce CheckWhy, a challenging dataset tailored to a novel causal fact verification task: checking the truthfulness of the causal relation within claims through rigorous reasoning steps. CheckWhy consists of over 19K "why" claim-evidence-argument structure triplets with supports, refutes, and not enough info labels. Each argument structure is composed of connected evidence, representing the reasoning process that begins with foundational evidence and progresses toward claim establishment. Through extensive experiments on state-of-the-art models, we validate the importance of incorporating the argument structure for causal fact verification. Moreover, the automated and human evaluation of argument structure generation reveals the difficulty in producing satisfying argument structure by fine-tuned models or Chain-of-Thought prompted LLMs, leaving considerable room for future improvements.
Abstract:The increasing rate of road accidents worldwide results not only in significant loss of life but also imposes billions financial burdens on societies. Current research in traffic crash frequency modeling and analysis has predominantly approached the problem as classification tasks, focusing mainly on learning-based classification or ensemble learning methods. These approaches often overlook the intricate relationships among the complex infrastructure, environmental, human and contextual factors related to traffic crashes and risky situations. In contrast, we initially propose a large-scale traffic crash language dataset, named CrashEvent, summarizing 19,340 real-world crash reports and incorporating infrastructure data, environmental and traffic textual and visual information in Washington State. Leveraging this rich dataset, we further formulate the crash event feature learning as a novel text reasoning problem and further fine-tune various large language models (LLMs) to predict detailed accident outcomes, such as crash types, severity and number of injuries, based on contextual and environmental factors. The proposed model, CrashLLM, distinguishes itself from existing solutions by leveraging the inherent text reasoning capabilities of LLMs to parse and learn from complex, unstructured data, thereby enabling a more nuanced analysis of contributing factors. Our experiments results shows that our LLM-based approach not only predicts the severity of accidents but also classifies different types of accidents and predicts injury outcomes, all with averaged F1 score boosted from 34.9% to 53.8%. Furthermore, CrashLLM can provide valuable insights for numerous open-world what-if situational-awareness traffic safety analyses with learned reasoning features, which existing models cannot offer. We make our benchmark, datasets, and model public available for further exploration.
Abstract:Generative domain adaptation has achieved remarkable progress, enabling us to adapt a pre-trained generator to a new target domain. However, existing methods simply adapt the generator to a single target domain and are limited to a single modality, either text-driven or image-driven. Moreover, they are prone to overfitting domain-specific attributes, which inevitably compromises cross-domain consistency. In this paper, we propose UniHDA, a unified and versatile framework for generative hybrid domain adaptation with multi-modal references from multiple domains. We use CLIP encoder to project multi-modal references into a unified embedding space and then linear interpolate the direction vectors from multiple target domains to achieve hybrid domain adaptation. To ensure the cross-domain consistency, we propose a novel cross-domain spatial structure (CSS) loss that maintains detailed spatial structure information between source and target generator. Experiments show that the adapted generator can synthesise realistic images with various attribute compositions. Additionally, our framework is versatile to multiple generators, \eg, StyleGAN2 and Diffusion Models.