Abstract:Graph Neural Networks (GNNs) have demonstrated remarkable efficacy in handling graph-structured data; however, they exhibit failures after deployment, which can cause severe consequences. Hence, conducting thorough testing before deployment becomes imperative to ensure the reliability of GNNs. However, thorough testing requires numerous manually annotated test data. To mitigate the annotation cost, strategically prioritizing and labeling high-quality unlabeled inputs for testing becomes crucial, which facilitates uncovering more model failures with a limited labeling budget. Unfortunately, existing test input prioritization techniques either overlook the valuable information contained in graph structures or are overly reliant on attributes extracted from the target model, i.e., model-aware attributes, whose quality can vary significantly. To address these issues, we propose a novel test input prioritization framework, named GraphRank, for GNNs. GraphRank introduces model-agnostic attributes to compensate for the limitations of the model-aware ones. It also leverages the graph structure information to aggregate attributes from neighboring nodes, thereby enhancing the model-aware and model-agnostic attributes. Furthermore, GraphRank combines the above attributes with a binary classifier, using it as a ranking model to prioritize inputs. This classifier undergoes iterative training, which enables it to learn from each round's feedback and improve its performance accordingly. Extensive experiments demonstrate GraphRank's superiority over existing techniques.
Abstract:Multi-view egocentric dynamic scene reconstruction holds significant research value for applications in holographic documentation of social interactions. However, existing reconstruction datasets focus on static multi-view or single-egocentric view setups, lacking multi-view egocentric datasets for dynamic scene reconstruction. Therefore, we present MultiEgo, the first multi-view egocentric dataset for 4D dynamic scene reconstruction. The dataset comprises five canonical social interaction scenes: meetings, performances, and a presentation. Each scene provides five authentic egocentric videos captured by participants wearing AR glasses. We design a hardware-based data acquisition system and processing pipeline, achieving sub-millisecond temporal synchronization across views, coupled with accurate pose annotations. Experiment validation demonstrates the practical utility and effectiveness of our dataset for free-viewpoint video (FVV) applications, establishing MultiEgo as a foundational resource for advancing multi-view egocentric dynamic scene reconstruction research.
Abstract:LLM-agent based binary code analysis has demonstrated significant potential across a wide range of software security scenarios, including vulnerability detection, malware analysis, etc. In agent workflow, however, retrieving the positive from thousands of stripped binary functions based on user query remains under-studied and challenging, as the absence of symbolic information distinguishes it from source code retrieval. In this paper, we introduce, BinSeek, the first two-stage cross-modal retrieval framework for stripped binary code analysis. It consists of two models: BinSeekEmbedding is trained on large-scale dataset to learn the semantic relevance of the binary code and the natural language description, furthermore, BinSeek-Reranker learns to carefully judge the relevance of the candidate code to the description with context augmentation. To this end, we built an LLM-based data synthesis pipeline to automate training construction, also deriving a domain benchmark for future research. Our evaluation results show that BinSeek achieved the state-of-the-art performance, surpassing the the same scale models by 31.42% in Rec@3 and 27.17% in MRR@3, as well as leading the advanced general-purpose models that have 16 times larger parameters.
Abstract:Video generation has been advancing rapidly, and diffusion transformer (DiT) based models have demonstrated remark- able capabilities. However, their practical deployment is of- ten hindered by slow inference speeds and high memory con- sumption. In this paper, we propose a novel pipelining frame- work named PipeDiT to accelerate video generation, which is equipped with three main innovations. First, we design a pipelining algorithm (PipeSP) for sequence parallelism (SP) to enable the computation of latent generation and commu- nication among multiple GPUs to be pipelined, thus reduc- ing inference latency. Second, we propose DeDiVAE to de- couple the diffusion module and the variational autoencoder (VAE) module into two GPU groups, whose executions can also be pipelined to reduce memory consumption and infer- ence latency. Third, to better utilize the GPU resources in the VAE group, we propose an attention co-processing (Aco) method to further reduce the overall video generation latency. We integrate our PipeDiT into both OpenSoraPlan and Hun- yuanVideo, two state-of-the-art open-source video generation frameworks, and conduct extensive experiments on two 8- GPU systems. Experimental results show that, under many common resolution and timestep configurations, our PipeDiT achieves 1.06x to 4.02x speedups over OpenSoraPlan and HunyuanVideo.
Abstract:Class incremental medical image segmentation (CIMIS) aims to preserve knowledge of previously learned classes while learning new ones without relying on old-class labels. However, existing methods 1) either adopt one-size-fits-all strategies that treat all spatial regions and feature channels equally, which may hinder the preservation of accurate old knowledge, 2) or focus solely on aligning local prototypes with global ones for old classes while overlooking their local representations in new data, leading to knowledge degradation. To mitigate the above issues, we propose Prototype-Guided Calibration Distillation (PGCD) and Dual-Aligned Prototype Distillation (DAPD) for CIMIS in this paper. Specifically, PGCD exploits prototype-to-feature similarity to calibrate class-specific distillation intensity in different spatial regions, effectively reinforcing reliable old knowledge and suppressing misleading information from old classes. Complementarily, DAPD aligns the local prototypes of old classes extracted from the current model with both global prototypes and local prototypes, further enhancing segmentation performance on old categories. Comprehensive evaluations on two widely used multi-organ segmentation benchmarks demonstrate that our method outperforms state-of-the-art methods, highlighting its robustness and generalization capabilities.
Abstract:Multi-source domain adaptation represents an effective approach to addressing individual differences in cross-subject EEG emotion recognition. However, existing methods treat all source domains equally, neglecting the varying transfer difficulties between different source domains and the target domain. This oversight can lead to suboptimal adaptation. To address this challenge, we propose a novel Hard-Easy Dual Network (HEDN), which dynamically identifies "Hard Source" and "Easy Source" through a Task Difficulty Assessment (TDA) mechanism and establishes two specialized knowledge adaptation branches. Specifically, the Hard Network is dedicated to handling "Hard Source" with higher transfer difficulty by aligning marginal distribution differences between source and target domains. Conversely, the Easy Network focuses on "Easy Source" with low transfer difficulty, utilizing a prototype classifier to model intra-class clustering structures while generating reliable pseudo-labels for the target domain through a prototype-guided label propagation algorithm. Extensive experiments on two benchmark datasets, SEED and SEED-IV, demonstrate that HEDN achieves state-of-the-art performance in cross-subject EEG emotion recognition, with average accuracies of 93.58\% on SEED and 79.82\% on SEED-IV, respectively. These results confirm the effectiveness and generalizability of HEDN in cross-subject EEG emotion recognition.
Abstract:To further suppress the inherent self-interference (SI) in co-frequency and co-time full-duplex (CCFD) systems, we propose integrating a stacked intelligent metasurface (SIM) into the RF front-end to enhance signal processing in the wave domain. Furthermore, an end-to-end (E2E) learning-based signal processing method is adopted to control the metasurface. Specifically, the real metasurface is abstracted as hidden layers of a network, thereby constructing an electromagnetic neural network (EMNN) to enable driving control of the real communication system. Traditional communication tasks, such as channel coding, modulation, precoding, combining, demodulation, and channel decoding, are synchronously carried out during the electromagnetic (EM) forward propagation through the metasurface. Simulation results show that, benefiting from the additional wave-domain processing capability of the SIM, the SIM-assisted CCFD system achieves significantly reduced bit error rate (BER) compared with conventional CCFD systems. Our study fully demonstrates the potential applications of EMNN and SIM-assisted E2E CCFD systems in next-generation transceiver design.




Abstract:Recent breakthroughs in generative AI have transformed recommender systems through end-to-end generation. OneRec reformulates recommendation as an autoregressive generation task, achieving high Model FLOPs Utilization. While OneRec-V1 has shown significant empirical success in real-world deployment, two critical challenges hinder its scalability and performance: (1) inefficient computational allocation where 97.66% of resources are consumed by sequence encoding rather than generation, and (2) limitations in reinforcement learning relying solely on reward models. To address these challenges, we propose OneRec-V2, featuring: (1) Lazy Decoder-Only Architecture: Eliminates encoder bottlenecks, reducing total computation by 94% and training resources by 90%, enabling successful scaling to 8B parameters. (2) Preference Alignment with Real-World User Interactions: Incorporates Duration-Aware Reward Shaping and Adaptive Ratio Clipping to better align with user preferences using real-world feedback. Extensive A/B tests on Kuaishou demonstrate OneRec-V2's effectiveness, improving App Stay Time by 0.467%/0.741% while balancing multi-objective recommendations. This work advances generative recommendation scalability and alignment with real-world feedback, representing a step forward in the development of end-to-end recommender systems.




Abstract:The Human-Object Interaction (HOI) task explores the dynamic interactions between humans and objects in physical environments, providing essential biomechanical and cognitive-behavioral foundations for fields such as robotics, virtual reality, and human-computer interaction. However, existing HOI data sets focus on details of affordance, often neglecting the influence of physical properties of objects on human long-term motion. To bridge this gap, we introduce the PA-HOI Motion Capture dataset, which highlights the impact of objects' physical attributes on human motion dynamics, including human posture, moving velocity, and other motion characteristics. The dataset comprises 562 motion sequences of human-object interactions, with each sequence performed by subjects of different genders interacting with 35 3D objects that vary in size, shape, and weight. This dataset stands out by significantly extending the scope of existing ones for understanding how the physical attributes of different objects influence human posture, speed, motion scale, and interacting strategies. We further demonstrate the applicability of the PA-HOI dataset by integrating it with existing motion generation methods, validating its capacity to transfer realistic physical awareness.
Abstract:Producing expressive facial animations from static images is a challenging task. Prior methods relying on explicit geometric priors (e.g., facial landmarks or 3DMM) often suffer from artifacts in cross reenactment and struggle to capture subtle emotions. Furthermore, existing approaches lack support for multi-character animation, as driving features from different individuals frequently interfere with one another, complicating the task. To address these challenges, we propose FantasyPortrait, a diffusion transformer based framework capable of generating high-fidelity and emotion-rich animations for both single- and multi-character scenarios. Our method introduces an expression-augmented learning strategy that utilizes implicit representations to capture identity-agnostic facial dynamics, enhancing the model's ability to render fine-grained emotions. For multi-character control, we design a masked cross-attention mechanism that ensures independent yet coordinated expression generation, effectively preventing feature interference. To advance research in this area, we propose the Multi-Expr dataset and ExprBench, which are specifically designed datasets and benchmarks for training and evaluating multi-character portrait animations. Extensive experiments demonstrate that FantasyPortrait significantly outperforms state-of-the-art methods in both quantitative metrics and qualitative evaluations, excelling particularly in challenging cross reenactment and multi-character contexts. Our project page is https://fantasy-amap.github.io/fantasy-portrait/.