Abstract:Generating high-quality cartoon animations multimodal control is challenging due to the complexity of non-human characters, stylistically diverse motions and fine-grained emotions. There is a huge domain gap between real-world videos and cartoon animation, as cartoon animation is usually abstract and has exaggerated motion. Meanwhile, public multimodal cartoon data are extremely scarce due to the difficulty of large-scale automatic annotation processes compared with real-life scenarios. To bridge this gap, We propose the MagicAnime dataset, a large-scale, hierarchically annotated, and multimodal dataset designed to support multiple video generation tasks, along with the benchmarks it includes. Containing 400k video clips for image-to-video generation, 50k pairs of video clips and keypoints for whole-body annotation, 12k pairs of video clips for video-to-video face animation, and 2.9k pairs of video and audio clips for audio-driven face animation. Meanwhile, we also build a set of multi-modal cartoon animation benchmarks, called MagicAnime-Bench, to support the comparisons of different methods in the tasks above. Comprehensive experiments on four tasks, including video-driven face animation, audio-driven face animation, image-to-video animation, and pose-driven character animation, validate its effectiveness in supporting high-fidelity, fine-grained, and controllable generation.
Abstract:Recent advances in diffusion models have significantly improved conditional video generation, particularly in the pose-guided human image animation task. Although existing methods are capable of generating high-fidelity and time-consistent animation sequences in regular motions and static scenes, there are still obvious limitations when facing complex human body motions (Hypermotion) that contain highly dynamic, non-standard motions, and the lack of a high-quality benchmark for evaluation of complex human motion animations. To address this challenge, we introduce the \textbf{Open-HyperMotionX Dataset} and \textbf{HyperMotionX Bench}, which provide high-quality human pose annotations and curated video clips for evaluating and improving pose-guided human image animation models under complex human motion conditions. Furthermore, we propose a simple yet powerful DiT-based video generation baseline and design spatial low-frequency enhanced RoPE, a novel module that selectively enhances low-frequency spatial feature modeling by introducing learnable frequency scaling. Our method significantly improves structural stability and appearance consistency in highly dynamic human motion sequences. Extensive experiments demonstrate the effectiveness of our dataset and proposed approach in advancing the generation quality of complex human motion image animations. Code and dataset will be made publicly available.
Abstract:Reconstructing 3D human bodies from realistic motion sequences remains a challenge due to pervasive and complex occlusions. Current methods struggle to capture the dynamics of occluded body parts, leading to model penetration and distorted motion. RemoCap leverages Spatial Disentanglement (SD) and Motion Disentanglement (MD) to overcome these limitations. SD addresses occlusion interference between the target human body and surrounding objects. It achieves this by disentangling target features along the dimension axis. By aligning features based on their spatial positions in each dimension, SD isolates the target object's response within a global window, enabling accurate capture despite occlusions. The MD module employs a channel-wise temporal shuffling strategy to simulate diverse scene dynamics. This process effectively disentangles motion features, allowing RemoCap to reconstruct occluded parts with greater fidelity. Furthermore, this paper introduces a sequence velocity loss that promotes temporal coherence. This loss constrains inter-frame velocity errors, ensuring the predicted motion exhibits realistic consistency. Extensive comparisons with state-of-the-art (SOTA) methods on benchmark datasets demonstrate RemoCap's superior performance in 3D human body reconstruction. On the 3DPW dataset, RemoCap surpasses all competitors, achieving the best results in MPVPE (81.9), MPJPE (72.7), and PA-MPJPE (44.1) metrics. Codes are available at https://wanghongsheng01.github.io/RemoCap/.