Shanghai Research Institute for Intelligent Autonomous Systems, Tongji University, Shanghai, China
Abstract:Bio-inspired Spiking Neural Networks (SNNs) provide an energy-efficient way to extract 3D spatio-temporal features. However, existing 3D SNNs have struggled with long-range dependencies until the recent emergence of Mamba, which offers superior computational efficiency and sequence modeling capability. In this work, we propose Spiking Point Mamba (SPM), the first Mamba-based SNN in the 3D domain. Due to the poor performance of simply transferring Mamba to 3D SNNs, SPM is designed to utilize both the sequence modeling capabilities of Mamba and the temporal feature extraction of SNNs. Specifically, we first introduce Hierarchical Dynamic Encoding (HDE), an improved direct encoding method that effectively introduces dynamic temporal mechanism, thereby facilitating temporal interactions. Then, we propose a Spiking Mamba Block (SMB), which builds upon Mamba while learning inter-time-step features and minimizing information loss caused by spikes. Finally, to further enhance model performance, we adopt an asymmetric SNN-ANN architecture for spike-based pre-training and finetune. Compared with the previous state-of-the-art SNN models, SPM improves OA by +6.2%, +6.1%, and +7.4% on three variants of ScanObjectNN, and boosts instance mIOU by +1.9% on ShapeNetPart. Meanwhile, its energy consumption is at least 3.5x lower than that of its ANN counterpart. The code will be made publicly available.
Abstract:Integrated heterogeneous service provisioning (IHSP) is a promising paradigm that is designed to concurrently support a variety of heterogeneous services, extending beyond sensing and communication to meet the diverse needs of emerging applications. However, a primary challenge of IHSP is addressing the conflicts between multiple competing service demands under constrained resources. In this paper, we overcome this challenge by the joint use of two novel elastic design strategies: compromised service value assessment and flexible multi-dimensional resource multiplexing. Consequently, we propose a value-prioritized elastic multi-dimensional multiple access (MDMA) mechanism for IHSP systems. First, we modify the Value-of-Service (VoS) metric by incorporating elastic parameters to characterize user-specific tolerance and compromise in response to various performance degradations under constrained resources. This VoS metric serves as the foundation for prioritizing services and enabling effective fairness service scheduling among concurrent competing demands. Next, we adapt the MDMA to elastically multiplex services using appropriate multiple access schemes across different resource domains. This protocol leverages user-specific interference tolerances and cancellation capabilities across different domains to reduce resource-demanding conflicts and co-channel interference within the same domain. Then, we maximize the system's VoS by jointly optimizing MDMA design and power allocation. Since this problem is non-convex, we propose a monotonic optimization-assisted dynamic programming (MODP) algorithm to obtain its optimal solution. Additionally, we develop the VoS-prioritized successive convex approximation (SCA) algorithm to efficiently find its suboptimal solution. Finally, simulations are presented to validate the effectiveness of the proposed designs.
Abstract:Image decomposition offers deep insights into the imaging factors of visual data and significantly enhances various advanced computer vision tasks. In this work, we introduce a novel approach to low-light image enhancement based on decomposed physics-informed priors. Existing methods that directly map low-light to normal-light images in the sRGB color space suffer from inconsistent color predictions and high sensitivity to spectral power distribution (SPD) variations, resulting in unstable performance under diverse lighting conditions. To address these challenges, we introduce a Physics-informed Color-aware Transform (PiCat), a learning-based framework that converts low-light images from the sRGB color space into deep illumination-invariant descriptors via our proposed Color-aware Transform (CAT). This transformation enables robust handling of complex lighting and SPD variations. Complementing this, we propose the Content-Noise Decomposition Network (CNDN), which refines the descriptor distributions to better align with well-lit conditions by mitigating noise and other distortions, thereby effectively restoring content representations to low-light images. The CAT and the CNDN collectively act as a physical prior, guiding the transformation process from low-light to normal-light domains. Our proposed PiCat framework demonstrates superior performance compared to state-of-the-art methods across five benchmark datasets.
Abstract:Coordinated beamforming across distributed base stations (BSs) in cell-free architectures can efficiently support integrated sensing and communication (ISAC) users by improving resource sharing and reducing conflicts in the spatial domain. However, coordinating numerous BSs within the ISAC network poses risks of generating substantial interference for other networks sharing the spectrum, while also increasing operational costs from power consumption and signaling overhead. Therefore, in this paper, we propose an interference-suppressed and cost-optimized cell-free ISAC network by opportunistically and cooperatively orchestrating distributed radio resources to address competing sensing and communication (S\&C) demands. Specifically, we conceive a radiation footprint control mechanism that autonomously suppresses interference across the entire signal propagation space to safeguard other networks without exchanging signaling. Then, we propose joint BS activation and beamforming coordination to dynamically activate appropriate BSs and orchestrate their spatial beams for service provisioning. Building upon this framework, we formulate a cost-efficient utility maximization problem that considers individual S\&C demands and location-dependent radiation footprint constraints. Since this results in a non-convex optimization problem, we develop a monotonic optimization embedded branch-and-bound (MO-BRB) algorithm to find the optimal solution. Additionally, we apply a low-complexity iterative method to obtain near-optimal solutions. Finally, simulation results validate the effectiveness of the proposed algorithms.
Abstract:Deep learning techniques have achieved remarkable success in the semantic segmentation of remote sensing images and in land-use change detection. Nevertheless, their real-time deployment on edge platforms remains constrained by decoder complexity. Herein, we introduce LightFormer, a lightweight decoder for time-critical tasks that involve unstructured targets, such as disaster assessment, unmanned aerial vehicle search-and-rescue, and cultural heritage monitoring. LightFormer employs a feature-fusion and refinement module built on channel processing and a learnable gating mechanism to aggregate multi-scale, multi-range information efficiently, which drastically curtails model complexity. Furthermore, we propose a spatial information selection module (SISM) that integrates long-range attention with a detail preservation branch to capture spatial dependencies across multiple scales, thereby substantially improving the recognition of unstructured targets in complex scenes. On the ISPRS Vaihingen benchmark, LightFormer attains 99.9% of GLFFNet's mIoU (83.9% vs. 84.0%) while requiring only 14.7% of its FLOPs and 15.9% of its parameters, thus achieving an excellent accuracy-efficiency trade-off. Consistent results on LoveDA, ISPRS Potsdam, RescueNet, and FloodNet further demonstrate its robustness and superior perception of unstructured objects. These findings highlight LightFormer as a practical solution for remote sensing applications where both computational economy and high-precision segmentation are imperative.
Abstract:Imitation learning (IL) has proven effective for enabling robots to acquire visuomotor skills through expert demonstrations. However, traditional IL methods are limited by their reliance on high-quality, often scarce, expert data, and suffer from covariate shift. To address these challenges, recent advances in offline IL have incorporated suboptimal, unlabeled datasets into the training. In this paper, we propose a novel approach to enhance policy learning from mixed-quality offline datasets by leveraging task-relevant trajectory fragments and rich environmental dynamics. Specifically, we introduce a state-based search framework that stitches state-action pairs from imperfect demonstrations, generating more diverse and informative training trajectories. Experimental results on standard IL benchmarks and real-world robotic tasks showcase that our proposed method significantly improves both generalization and performance.
Abstract:The success of OpenAI's ChatGPT in 2023 has spurred financial enterprises into exploring Generative AI applications to reduce costs or drive revenue within different lines of businesses in the Financial Industry. While these applications offer strong potential for efficiencies, they introduce new model risks, primarily hallucinations and toxicity. As highly regulated entities, financial enterprises (primarily large US banks) are obligated to enhance their model risk framework with additional testing and controls to ensure safe deployment of such applications. This paper outlines the key aspects for model risk management of generative AI model with a special emphasis on additional practices required in model validation.
Abstract:Text-to-video (T2V) generation has made significant strides with diffusion models. However, existing methods still struggle with accurately binding attributes, determining spatial relationships, and capturing complex action interactions between multiple subjects. To address these limitations, we propose MagicComp, a training-free method that enhances compositional T2V generation through dual-phase refinement. Specifically, (1) During the Conditioning Stage: We introduce the Semantic Anchor Disambiguation to reinforces subject-specific semantics and resolve inter-subject ambiguity by progressively injecting the directional vectors of semantic anchors into original text embedding; (2) During the Denoising Stage: We propose Dynamic Layout Fusion Attention, which integrates grounding priors and model-adaptive spatial perception to flexibly bind subjects to their spatiotemporal regions through masked attention modulation. Furthermore, MagicComp is a model-agnostic and versatile approach, which can be seamlessly integrated into existing T2V architectures. Extensive experiments on T2V-CompBench and VBench demonstrate that MagicComp outperforms state-of-the-art methods, highlighting its potential for applications such as complex prompt-based and trajectory-controllable video generation. Project page: https://hong-yu-zhang.github.io/MagicComp-Page/.
Abstract:Malicious users attempt to replicate commercial models functionally at low cost by training a clone model with query responses. It is challenging to timely prevent such model-stealing attacks to achieve strong protection and maintain utility. In this paper, we propose a novel non-parametric detector called Account-aware Distribution Discrepancy (ADD) to recognize queries from malicious users by leveraging account-wise local dependency. We formulate each class as a Multivariate Normal distribution (MVN) in the feature space and measure the malicious score as the sum of weighted class-wise distribution discrepancy. The ADD detector is combined with random-based prediction poisoning to yield a plug-and-play defense module named D-ADD for image classification models. Results of extensive experimental studies show that D-ADD achieves strong defense against different types of attacks with little interference in serving benign users for both soft and hard-label settings.
Abstract:Existing Large Reasoning Models (LRMs) have shown the potential of reinforcement learning (RL) to enhance the complex reasoning capabilities of Large Language Models~(LLMs). While they achieve remarkable performance on challenging tasks such as mathematics and coding, they often rely on their internal knowledge to solve problems, which can be inadequate for time-sensitive or knowledge-intensive questions, leading to inaccuracies and hallucinations. To address this, we propose \textbf{R1-Searcher}, a novel two-stage outcome-based RL approach designed to enhance the search capabilities of LLMs. This method allows LLMs to autonomously invoke external search systems to access additional knowledge during the reasoning process. Our framework relies exclusively on RL, without requiring process rewards or distillation for a cold start. % effectively generalizing to out-of-domain datasets and supporting both Base and Instruct models. Our experiments demonstrate that our method significantly outperforms previous strong RAG methods, even when compared to the closed-source GPT-4o-mini.