By introducing routers to selectively activate experts in Transformer layers, the mixture-of-experts (MoE) architecture significantly reduces computational costs in large language models (LLMs) while maintaining competitive performance, especially for models with massive parameters. However, prior work has largely focused on utility and efficiency, leaving the safety risks associated with this sparse architecture underexplored. In this work, we show that the safety of MoE LLMs is as sparse as their architecture by discovering unsafe routes: routing configurations that, once activated, convert safe outputs into harmful ones. Specifically, we first introduce the Router Safety importance score (RoSais) to quantify the safety criticality of each layer's router. Manipulation of only the high-RoSais router(s) can flip the default route into an unsafe one. For instance, on JailbreakBench, masking 5 routers in DeepSeek-V2-Lite increases attack success rate (ASR) by over 4$\times$ to 0.79, highlighting an inherent risk that router manipulation may naturally occur in MoE LLMs. We further propose a Fine-grained token-layer-wise Stochastic Optimization framework to discover more concrete Unsafe Routes (F-SOUR), which explicitly considers the sequentiality and dynamics of input tokens. Across four representative MoE LLM families, F-SOUR achieves an average ASR of 0.90 and 0.98 on JailbreakBench and AdvBench, respectively. Finally, we outline defensive perspectives, including safety-aware route disabling and router training, as promising directions to safeguard MoE LLMs. We hope our work can inform future red-teaming and safeguarding of MoE LLMs. Our code is provided in https://github.com/TrustAIRLab/UnsafeMoE.
Live-streaming recommender system serves as critical infrastructure that bridges the patterns of real-time interactions between users and authors. Similar to traditional industrial recommender systems, live-streaming recommendation also relies on cascade architectures to support large-scale concurrency. Recent advances in generative recommendation unify the multi-stage recommendation process with Transformer-based architectures, offering improved scalability and higher computational efficiency. However, the inherent complexity of live-streaming prevents the direct transfer of these methods to live-streaming scenario, where continuously evolving content, limited lifecycles, strict real-time constraints, and heterogeneous multi-objectives introduce unique challenges that invalidate static tokenization and conventional model framework. To address these issues, we propose OneLive, a dynamically unified generative recommendation framework tailored for live-streaming scenario. OneLive integrates four key components: (i) A Dynamic Tokenizer that continuously encodes evolving real-time live content fused with behavior signal through residual quantization; (ii) A Time-Aware Gated Attention mechanism that explicitly models temporal dynamics for timely decision making; (iii) An efficient decoder-only generative architecture enhanced with Sequential MTP and QK Norm for stable training and accelerated inference; (iv) A Unified Multi-Objective Alignment Framework reinforces policy optimization for personalized preferences.
Composed image retrieval (CIR) requires complex reasoning over heterogeneous visual and textual constraints. Existing approaches largely fall into two paradigms: unified embedding retrieval, which suffers from single-model myopia, and heuristic agentic retrieval, which is limited by suboptimal, trial-and-error orchestration. To this end, we propose OSCAR, an optimization-steered agentic planning framework for composed image retrieval. We are the first to reformulate agentic CIR from a heuristic search process into a principled trajectory optimization problem. Instead of relying on heuristic trial-and-error exploration, OSCAR employs a novel offline-online paradigm. In the offline phase, we model CIR via atomic retrieval selection and composition as a two-stage mixed-integer programming problem, mathematically deriving optimal trajectories that maximize ground-truth coverage for training samples via rigorous boolean set operations. These trajectories are then stored in a golden library to serve as in-context demonstrations for online steering of VLM planner at online inference time. Extensive experiments on three public benchmarks and a private industrial benchmark show that OSCAR consistently outperforms SOTA baselines. Notably, it achieves superior performance using only 10% of training data, demonstrating strong generalization of planning logic rather than dataset-specific memorization.
Aerial manipulation requires force-aware capabilities to enable safe and effective grasping and physical interaction. Previous works often rely on heavy, expensive force sensors unsuitable for typical quadrotor platforms, or perform grasping without force feedback, risking damage to fragile objects. To address these limitations, we propose a novel force-aware grasping framework incorporating six low-cost, sensitive skin-like tactile sensors. We introduce a magnetic-based tactile sensing module that provides high-precision three-dimensional force measurements. We eliminate geomagnetic interference through a reference Hall sensor and simplify the calibration process compared to previous work. The proposed framework enables precise force-aware grasping control, allowing safe manipulation of fragile objects and real-time weight measurement of grasped items. The system is validated through comprehensive real-world experiments, including balloon grasping, dynamic load variation tests, and ablation studies, demonstrating its effectiveness in various aerial manipulation scenarios. Our approach achieves fully onboard operation without external motion capture systems, significantly enhancing the practicality of force-sensitive aerial manipulation. The supplementary video is available at: https://www.youtube.com/watch?v=mbcZkrJEf1I.
Given a weighted undirected graph, a number of clusters $k$, and an exponent $z$, the goal in the $(k, z)$-clustering problem on graphs is to select $k$ vertices as centers that minimize the sum of the distances raised to the power $z$ of each vertex to its closest center. In the dynamic setting, the graph is subject to adversarial edge updates, and the goal is to maintain explicitly an exact $(k, z)$-clustering solution in the induced shortest-path metric. While efficient dynamic $k$-center approximation algorithms on graphs exist [Cruciani et al. SODA 2024], to the best of our knowledge, no prior work provides similar results for the dynamic $(k,z)$-clustering problem. As the main result of this paper, we develop a randomized incremental $(k, z)$-clustering algorithm that maintains with high probability a constant-factor approximation in a graph undergoing edge insertions with a total update time of $\tilde O(k m^{1+o(1)}+ k^{1+\frac{1}λ} m)$, where $λ\geq 1$ is an arbitrary fixed constant. Our incremental algorithm consists of two stages. In the first stage, we maintain a constant-factor bicriteria approximate solution of size $\tilde{O}(k)$ with a total update time of $m^{1+o(1)}$ over all adversarial edge insertions. This first stage is an intricate adaptation of the bicriteria approximation algorithm by Mettu and Plaxton [Machine Learning 2004] to incremental graphs. One of our key technical results is that the radii in their algorithm can be assumed to be non-decreasing while the approximation ratio remains constant, a property that may be of independent interest. In the second stage, we maintain a constant-factor approximate $(k,z)$-clustering solution on a dynamic weighted instance induced by the bicriteria approximate solution. For this subproblem, we employ a dynamic spanner algorithm together with a static $(k,z)$-clustering algorithm.
Generative Recommendation has revolutionized recommender systems by reformulating retrieval as a sequence generation task over discrete item identifiers. Despite the progress, existing approaches typically rely on static, decoupled tokenization that ignores collaborative signals. While recent methods attempt to integrate collaborative signals into item identifiers either during index construction or through end-to-end modeling, they encounter significant challenges in real-world production environments. Specifically, the volatility of collaborative signals leads to unstable tokenization, and current end-to-end strategies often devolve into suboptimal two-stage training rather than achieving true co-evolution. To bridge this gap, we propose PIT, a dynamic Personalized Item Tokenizer framework for end-to-end generative recommendation, which employs a co-generative architecture that harmonizes collaborative patterns through collaborative signal alignment and synchronizes item tokenizer with generative recommender via a co-evolution learning. This enables the dynamic, joint, end-to-end evolution of both index construction and recommendation. Furthermore, a one-to-many beam index ensures scalability and robustness, facilitating seamless integration into large-scale industrial deployments. Extensive experiments on real-world datasets demonstrate that PIT consistently outperforms competitive baselines. In a large-scale deployment at Kuaishou, an online A/B test yielded a substantial 0.402% uplift in App Stay Time, validating the framework's effectiveness in dynamic industrial environments.
Attributed Graph Clustering (AGC) is a fundamental unsupervised task that integrates structural topology and node attributes to uncover latent patterns in graph-structured data. Despite its significance in industrial applications such as fraud detection and user segmentation, a significant chasm persists between academic research and real-world deployment. Current evaluation protocols suffer from the small-scale, high-homophily citation datasets, non-scalable full-batch training paradigms, and a reliance on supervised metrics that fail to reflect performance in label-scarce environments. To bridge these gaps, we present PyAGC, a comprehensive, production-ready benchmark and library designed to stress-test AGC methods across diverse scales and structural properties. We unify existing methodologies into a modular Encode-Cluster-Optimize framework and, for the first time, provide memory-efficient, mini-batch implementations for a wide array of state-of-the-art AGC algorithms. Our benchmark curates 12 diverse datasets, ranging from 2.7K to 111M nodes, specifically incorporating industrial graphs with complex tabular features and low homophily. Furthermore, we advocate for a holistic evaluation protocol that mandates unsupervised structural metrics and efficiency profiling alongside traditional supervised metrics. Battle-tested in high-stakes industrial workflows at Ant Group, this benchmark offers the community a robust, reproducible, and scalable platform to advance AGC research towards realistic deployment. The code and resources are publicly available via GitHub (https://github.com/Cloudy1225/PyAGC), PyPI (https://pypi.org/project/pyagc), and Documentation (https://pyagc.readthedocs.io).
Visual food recognition systems deployed in real-world environments, such as automated conveyor-belt inspection, are highly sensitive to domain shifts caused by illumination changes. While recent studies have shown that lighting variations can significantly distort food perception by both humans and AI, existing works are often limited to single food categories or controlled settings, and most public food datasets lack explicit illumination annotations. In this work, we investigate illumination-induced domain shift in multi-class food category recognition using two widely adopted datasets, Food-101 and Fruits-360. We demonstrate substantial accuracy degradation under cross-dataset evaluation due to mismatched visual conditions. To address this challenge, we construct synthetic illumination-augmented datasets by systematically varying light temperature and intensity, enabling controlled robustness analysis without additional labels. We further evaluate cross-dataset transfer learning and domain generalization, with a focus on illumination-sensitive target categories such as apple-based classes. Experimental results show that illumination-aware augmentation significantly improves recognition robustness under domain shift while preserving real-time performance. Our findings highlight the importance of illumination robustness and provide practical insights for deploying reliable food recognition systems in real-world inspection scenarios.
We propose the time-delayed transformer (TD-TF), a simplified transformer architecture for data-driven modeling of unsteady spatio-temporal dynamics. TD-TF bridges linear operator-based methods and deep sequence models by showing that a single-layer, single-head transformer can be interpreted as a nonlinear generalization of time-delayed dynamic mode decomposition (TD-DMD). The architecture is deliberately minimal, consisting of one self-attention layer with a single query per prediction and one feedforward layer, resulting in linear computational complexity in sequence length and a small parameter count. Numerical experiments demonstrate that TD-TF matches the performance of strong linear baselines on near-linear systems, while significantly outperforming them in nonlinear and chaotic regimes, where it accurately captures long-term dynamics. Validation studies on synthetic signals, unsteady aerodynamics, the Lorenz '63 system, and a reaction-diffusion model show that TD-TF preserves the interpretability and efficiency of linear models while providing substantially enhanced expressive power for complex dynamics.
Optical Camera Communication (OCC) systems can take advantage of the row-by-row scanning process of rolling-shutter cameras to capture the fast variations of light intensity coming from Visible Light Communication (VLC) LED-based transmitters. In order to study the maximum data rate that is feasible in such kind of OCC systems, this paper presents its equivalent digital communication system model in which the rolling-shutter camera is modeled as a rectangular matched-filter whose time width is equal to the exposure time of the camera, followed by a sampling process at the pixel row sweep rate of the camera. Based on the proposed rolling-shutter camera model, the maximum symbol rate that such OCC systems can support is experimentally demonstrated, and the impact of imperfect time synchronization between the VLC transmitter and the rolling-shutter OCC receiver is characterized in the form of Inter-Symbol Interference (ISI). The equivalent three-tap channel model that results from this process is experimentally validated and the generated ISI is compensated with the use of linear equalization in reception. Simulation and experimental results show a strong correlation between them, demonstrating that the proposed approach can be used to make the OCC system work at the Nyquist sampling rate, which is equivalent to the pixel row sweep rate of the rolling-shutter camera used in reception.