Abstract:Bridge models in image restoration construct a diffusion process from degraded to clear images. However, existing methods typically require training a bridge model from scratch for each specific type of degradation, resulting in high computational costs and limited performance. This work aims to efficiently leverage pretrained generative priors within existing image restoration bridges to eliminate this requirement. The main challenge is that standard generative models are typically designed for a diffusion process that starts from pure noise, while restoration tasks begin with a low-quality image, resulting in a mismatch in the state distributions between the two processes. To address this challenge, we propose a transition equation that bridges two diffusion processes with the same endpoint distribution. Based on this, we introduce the IRBridge framework, which enables the direct utilization of generative models within image restoration bridges, offering a more flexible and adaptable approach to image restoration. Extensive experiments on six image restoration tasks demonstrate that IRBridge efficiently integrates generative priors, resulting in improved robustness and generalization performance. Code will be available at GitHub.
Abstract:Autoregressive pretraining has become the de facto paradigm for learning general-purpose representations in large language models (LLMs). However, linear probe performance across downstream perception tasks shows substantial variability, suggesting that features optimized for next-token prediction do not consistently transfer well to downstream perception tasks. We demonstrate that representations learned via autoregression capture features that may lie outside the subspaces most informative for perception. To quantify the (mis)alignment between autoregressive pretraining and downstream perception, we introduce the Next Token Perception Score (NTPS)-a score derived under a linear setting that measures the overlap between autoregressive and perception feature subspaces. This metric can be easily computed in closed form from pretrained representations and labeled data, and is proven to both upper- and lower-bound the excess loss. Empirically, we show that NTPS correlates strongly with linear probe accuracy across 12 diverse NLP datasets and eight pretrained models ranging from 270M to 8B parameters, confirming its utility as a measure of alignment. Furthermore, we show that NTPS increases following low-rank adaptation (LoRA) fine-tuning, especially in large models, suggesting that LoRA aligning representations to perception tasks enhances subspace overlap and thus improves downstream performance. More importantly, we find that NTPS reliably predicts the additional accuracy gains attained by LoRA finetuning thereby providing a lightweight prescreening tool for LoRA adaptation. Our results offer both theoretical insights and practical tools for analytically assessing LLM perception skills.
Abstract:Deep neural networks (DNNs) are highly susceptible to adversarial samples, raising concerns about their reliability in safety-critical tasks. Currently, methods of evaluating adversarial robustness are primarily categorized into attack-based and certified robustness evaluation approaches. The former not only relies on specific attack algorithms but also is highly time-consuming, while the latter due to its analytical nature, is typically difficult to implement for large and complex models. A few studies evaluate model robustness based on the model's decision boundary, but they suffer from low evaluation accuracy. To address the aforementioned issues, we propose a novel adversarial robustness evaluation metric, Robustness Difference Index (RDI), which is based on sample clustering features. RDI draws inspiration from clustering evaluation by analyzing the intra-class and inter-class distances of feature vectors separated by the decision boundary to quantify model robustness. It is attack-independent and has high computational efficiency. Experiments show that, RDI demonstrates a stronger correlation with the gold-standard adversarial robustness metric of attack success rate (ASR). The average computation time of RDI is only 1/30 of the evaluation method based on the PGD attack. Our open-source code is available at: https://anonymous.4open.science/r/RDI-B1DA.
Abstract:Cross-modal generalization aims to learn a shared discrete representation space from multimodal pairs, enabling knowledge transfer across unannotated modalities. However, achieving a unified representation for all modality pairs requires extensive paired data, which is often impractical. Inspired by the availability of abundant bimodal data (e.g., in ImageBind), we explore a continual learning approach that incrementally maps new modalities into a shared discrete codebook via a mediator modality. We propose the Continual Mixture of Experts Adapter (CMoE-Adapter) to project diverse modalities into a unified space while preserving prior knowledge. To align semantics across stages, we introduce a Pseudo-Modality Replay (PMR) mechanism with a dynamically expanding codebook, enabling the model to adaptively incorporate new modalities using learned ones as guidance. Extensive experiments on image-text, audio-text, video-text, and speech-text show that our method achieves strong performance on various cross-modal generalization tasks. Code is provided in the supplementary material.
Abstract:Multi-modal models excel in cross-modal tasks but are computationally expensive due to their billions of parameters. Parameter-efficient fine-tuning (PEFT) offers a solution by adding small trainable components while freezing pre-trained parameters. However, existing methods primarily focus on uni-modal processing, overlooking the critical modal fusion needed for multi-modal tasks. To fill this gap, we propose heterogeneous mixture of experts adapters that extend the traditional PEFT framework to support multi-modal expert combinations and improve information interaction. Additionally, our approach modifies the affine linear expert design to enable efficient modal fusion in a low-rank space, achieving competitive performance with only 5-8\% of the parameters fine-tuned. Experiments across eight downstream tasks, including visual-audio and text-visual, demonstrate the superior performance of the approach.
Abstract:The robustness of Graph Neural Networks (GNNs) has become an increasingly important topic due to their expanding range of applications. Various attack methods have been proposed to explore the vulnerabilities of GNNs, ranging from Graph Modification Attacks (GMA) to the more practical and flexible Graph Injection Attacks (GIA). However, existing methods face two key challenges: (i) their reliance on surrogate models, which often leads to reduced attack effectiveness due to structural differences and prior biases, and (ii) existing GIA methods often sacrifice attack success rates in undefended settings to bypass certain defense models, thereby limiting their overall effectiveness. To overcome these limitations, we propose QUGIA, a Query-based and Unnoticeable Graph Injection Attack. QUGIA injects nodes by first selecting edges based on victim node connections and then generating node features using a Bayesian framework. This ensures that the injected nodes are similar to the original graph nodes, implicitly preserving homophily and making the attack more unnoticeable. Unlike previous methods, QUGIA does not rely on surrogate models, thereby avoiding performance degradation and achieving better generalization. Extensive experiments on six real-world datasets with diverse characteristics demonstrate that QUGIA achieves unnoticeable attacks and outperforms state-of-the-art attackers. The code will be released upon acceptance.
Abstract:Graph Neural Networks (GNNs) have achieved notable success in tasks such as social and transportation networks. However, recent studies have highlighted the vulnerability of GNNs to backdoor attacks, raising significant concerns about their reliability in real-world applications. Despite initial efforts to defend against specific graph backdoor attacks, existing defense methods face two main challenges: either the inability to establish a clear distinction between triggers and clean nodes, resulting in the removal of many clean nodes, or the failure to eliminate the impact of triggers, making it challenging to restore the target nodes to their pre-attack state. Through empirical analysis of various existing graph backdoor attacks, we observe that the triggers generated by these methods exhibit over-similarity in both features and structure. Based on this observation, we propose a novel graph backdoor defense method SimGuard. We first utilizes a similarity-based metric to detect triggers and then employs contrastive learning to train a backdoor detector that generates embeddings capable of separating triggers from clean nodes, thereby improving detection efficiency. Extensive experiments conducted on real-world datasets demonstrate that our proposed method effectively defends against various graph backdoor attacks while preserving performance on clean nodes. The code will be released upon acceptance.
Abstract:Recent research in the domain of multimodal unified representations predominantly employs codebook as representation forms, utilizing Vector Quantization(VQ) for quantization, yet there has been insufficient exploration of other quantization representation forms. Our work explores more precise quantization methods and introduces a new framework, Semantic Residual Cross-modal Information Disentanglement (SRCID), inspired by the numerical residual concept inherent to Residual Vector Quantization (RVQ). SRCID employs semantic residual-based information disentanglement for multimodal data to better handle the inherent discrepancies between different modalities. Our method enhances the capabilities of unified multimodal representations and demonstrates exceptional performance in cross-modal generalization and cross-modal zero-shot retrieval. Its average results significantly surpass existing state-of-the-art models, as well as previous attempts with RVQ and Finite Scalar Quantization (FSQ) based on these modals.
Abstract:Recent advancements in large language models (LLMs) have significantly advanced text-to-SQL systems. However, most LLM-based methods often narrowly focus on SQL generation, neglecting the complexities of real-world conversational queries. This oversight can lead to unreliable responses, particularly for ambiguous questions that cannot be directly addressed with SQL. To bridge this gap, we propose MMSQL, a comprehensive test suite designed to evaluate the question classification and SQL generation capabilities of LLMs by simulating real-world scenarios with diverse question types and multi-turn Q\&A interactions. Using MMSQL, we assessed the performance of popular LLMs, including both open-source and closed-source models, and identified key factors impacting their performance in such scenarios. Moreover, we introduce an LLM-based multi-agent framework that employs specialized agents to identify question types and determine appropriate answering strategies. Our experiments demonstrate that this approach significantly enhances the model's ability to navigate the complexities of conversational dynamics, effectively handling the diverse and complex nature of user queries.
Abstract:Score identity Distillation (SiD) is a data-free method that has achieved state-of-the-art performance in image generation by leveraging only a pretrained diffusion model, without requiring any training data. However, the ultimate performance of SiD is constrained by the accuracy with which the pretrained model captures the true data scores at different stages of the diffusion process. In this paper, we introduce SiDA (SiD with Adversarial Loss), which not only enhances generation quality but also improves distillation efficiency by incorporating real images and adversarial loss. SiDA utilizes the encoder from the generator's score network as a discriminator, boosting its ability to distinguish between real images and those generated by SiD. The adversarial loss is batch-normalized within each GPU and then combined with the original SiD loss. This integration effectively incorporates the average "fakeness" per GPU batch into the pixel-based SiD loss, enabling SiDA to distill a single-step generator either from scratch or by fine-tuning an existing one. SiDA converges significantly faster than its predecessor when trained from scratch, and swiftly improves upon the original model's performance after an initial warmup period during fine-tuning from a pre-distilled SiD generator. This one-step adversarial distillation method has set new benchmarks for generation performance when distilling EDM diffusion models pretrained on CIFAR-10 (32x32) and ImageNet (64x64), achieving FID scores of $\mathbf{1.499}$ on CIFAR-10 unconditional, $\mathbf{1.396}$ on CIFAR-10 conditional, and $\mathbf{1.110}$ on ImageNet 64x64. Our open-source code will be integrated into the SiD codebase on GitHub.