Abstract:Visual food recognition systems deployed in real-world environments, such as automated conveyor-belt inspection, are highly sensitive to domain shifts caused by illumination changes. While recent studies have shown that lighting variations can significantly distort food perception by both humans and AI, existing works are often limited to single food categories or controlled settings, and most public food datasets lack explicit illumination annotations. In this work, we investigate illumination-induced domain shift in multi-class food category recognition using two widely adopted datasets, Food-101 and Fruits-360. We demonstrate substantial accuracy degradation under cross-dataset evaluation due to mismatched visual conditions. To address this challenge, we construct synthetic illumination-augmented datasets by systematically varying light temperature and intensity, enabling controlled robustness analysis without additional labels. We further evaluate cross-dataset transfer learning and domain generalization, with a focus on illumination-sensitive target categories such as apple-based classes. Experimental results show that illumination-aware augmentation significantly improves recognition robustness under domain shift while preserving real-time performance. Our findings highlight the importance of illumination robustness and provide practical insights for deploying reliable food recognition systems in real-world inspection scenarios.