School of Information Science and Technology, ShanghaiTech University
Abstract:Quantum neural networks converge faster and achieve higher accuracy than classical models. However, data augmentation in quantum machine learning remains underexplored. To tackle data scarcity, we integrate quantum generative adversarial networks (QGANs) with hybrid quantum-classical neural networks (HQCNNs) to develop an augmentation framework. We propose two strategies: a general approach to enhance data processing and classification across HQCNNs, and a customized strategy that dynamically generates samples tailored to the HQCNN's performance on specific data categories, improving its ability to learn from complex datasets. Simulation experiments on the MNIST dataset demonstrate that QGAN outperforms traditional data augmentation methods and classical GANs. Compared to baseline DCGAN, QGAN achieves comparable performance with half the parameters, balancing efficiency and effectiveness. This suggests that QGANs can simplify models and generate high-quality data, enhancing HQCNN accuracy and performance. These findings pave the way for applying quantum data augmentation techniques in machine learning.
Abstract:Quadrotors have demonstrated remarkable versatility, yet their full aerobatic potential remains largely untapped due to inherent underactuation and the complexity of aggressive maneuvers. Traditional approaches, separating trajectory optimization and tracking control, suffer from tracking inaccuracies, computational latency, and sensitivity to initial conditions, limiting their effectiveness in dynamic, high-agility scenarios. Inspired by recent breakthroughs in data-driven methods, we propose a reinforcement learning-based framework that directly maps drone states and aerobatic intentions to control commands, eliminating modular separation to enable quadrotors to perform end-to-end policy optimization for extreme aerobatic maneuvers. To ensure efficient and stable training, we introduce an automated curriculum learning strategy that dynamically adjusts aerobatic task difficulty. Enabled by domain randomization for robust zero-shot sim-to-real transfer, our approach is validated in demanding real-world experiments, including the first demonstration of a drone autonomously performing continuous inverted flight while reactively navigating a moving gate, showcasing unprecedented agility.
Abstract:End-to-end learning has emerged as a transformative paradigm in autonomous driving. However, the inherently multimodal nature of driving behaviors and the generalization challenges in long-tail scenarios remain critical obstacles to robust deployment. We propose DiffE2E, a diffusion-based end-to-end autonomous driving framework. This framework first performs multi-scale alignment of multi-sensor perception features through a hierarchical bidirectional cross-attention mechanism. It then introduces a novel class of hybrid diffusion-supervision decoders based on the Transformer architecture, and adopts a collaborative training paradigm that seamlessly integrates the strengths of both diffusion and supervised policy. DiffE2E models structured latent spaces, where diffusion captures the distribution of future trajectories and supervision enhances controllability and robustness. A global condition integration module enables deep fusion of perception features with high-level targets, significantly improving the quality of trajectory generation. Subsequently, a cross-attention mechanism facilitates efficient interaction between integrated features and hybrid latent variables, promoting the joint optimization of diffusion and supervision objectives for structured output generation, ultimately leading to more robust control. Experiments demonstrate that DiffE2E achieves state-of-the-art performance in both CARLA closed-loop evaluations and NAVSIM benchmarks. The proposed integrated diffusion-supervision policy offers a generalizable paradigm for hybrid action representation, with strong potential for extension to broader domains including embodied intelligence. More details and visualizations are available at \href{https://infinidrive.github.io/DiffE2E/}{project website}.
Abstract:Drones have become essential in various applications, but conventional quadrotors face limitations in confined spaces and complex tasks. Deformable drones, which can adapt their shape in real-time, offer a promising solution to overcome these challenges, while also enhancing maneuverability and enabling novel tasks like object grasping. This paper presents a novel approach to autonomous motion planning and control for deformable quadrotors. We introduce a shape-adaptive trajectory planner that incorporates deformation dynamics into path generation, using a scalable kinodynamic A* search to handle deformation parameters in complex environments. The backend spatio-temporal optimization is capable of generating optimally smooth trajectories that incorporate shape deformation. Additionally, we propose an enhanced control strategy that compensates for external forces and torque disturbances, achieving a 37.3\% reduction in trajectory tracking error compared to our previous work. Our approach is validated through simulations and real-world experiments, demonstrating its effectiveness in narrow-gap traversal and multi-modal deformable tasks.
Abstract:Achieving coordinated teamwork among legged robots requires both fine-grained locomotion control and long-horizon strategic decision-making. Robot soccer offers a compelling testbed for this challenge, combining dynamic, competitive, and multi-agent interactions. In this work, we present a hierarchical multi-agent reinforcement learning (MARL) framework that enables fully autonomous and decentralized quadruped robot soccer. First, a set of highly dynamic low-level skills is trained for legged locomotion and ball manipulation, such as walking, dribbling, and kicking. On top of these, a high-level strategic planning policy is trained with Multi-Agent Proximal Policy Optimization (MAPPO) via Fictitious Self-Play (FSP). This learning framework allows agents to adapt to diverse opponent strategies and gives rise to sophisticated team behaviors, including coordinated passing, interception, and dynamic role allocation. With an extensive ablation study, the proposed learning method shows significant advantages in the cooperative and competitive multi-agent soccer game. We deploy the learned policies to real quadruped robots relying solely on onboard proprioception and decentralized localization, with the resulting system supporting autonomous robot-robot and robot-human soccer matches on indoor and outdoor soccer courts.
Abstract:With the rapid development of robotics, multi-robot collaboration has become critical and challenging. One key problem is integrating data from multiple robots to build a globally consistent and accurate map for robust cooperation and precise localization. While traditional multi-robot pose graph optimization (PGO) maintains basic global consistency, it focuses primarily on pose optimization and ignores the geometric structure of the map. Moreover, PGO only uses loop closure as a constraint between two nodes, failing to fully exploit its capability to maintaining local consistency of multi-robot maps. Therefore, PGO-based multi-robot mapping methods often suffer from serious map divergence and blur, especially in regions with overlapping submaps. To address this issue, we propose Lemon-Mapping, a loop-enhanced framework for large-scale multi-session point cloud map fusion and optimization, which reasonably utilizes loop closure and improves the geometric quality of the map. We re-examine the role of loops for multi-robot mapping and introduce three key innovations. First, we develop a robust loop processing mechanism that effectively rejects outliers and a novel loop recall strategy to recover mistakenly removed loops. Second, we introduce a spatial bundle adjustment method for multi-robot maps that significantly reduces the divergence in overlapping regions and eliminates map blur. Third, we design a PGO strategy that leverages the refined constraints of bundle adjustment to extend the local accuracy to the global map. We validate our framework on several public datasets and a self-collected dataset. Experimental results demonstrate that our method outperforms traditional map merging approaches in terms of mapping accuracy and reduction of map divergence. Scalability experiments also demonstrate the strong capability of our framework to handle scenarios involving numerous robots.
Abstract:Integrated sensing and communications (ISAC) has been regarded as a key enabling technology for next-generation wireless networks. Compared to monostatic ISAC, bistatic ISAC can eliminate the critical challenge of self-interference cancellation and is well compatible with the existing network infrastructures. However, the synchronization between the transmitter and the sensing receiver becomes a crucial problem. The extracted channel state information (CSI) for sensing under communication synchronization contains different types of system errors, such as the sampling time offset (STO), carrier frequency offset (CFO), and random phase shift, which can severely degrade sensing performance or even render sensing infeasible. To address this problem, a reference-path-aided system calibration scheme is designed for mmWave bistatic ISAC systems, where the line-of-sight (LoS) path can be blocked. By exploiting the delay-angle sparsity feature in mmWave ISAC systems, the reference path, which can be either a LoS or a non-LoS (NLoS) path, is first identified. By leveraging the fact that all the paths suffer the same system errors, the channel parameter extracted from the reference path is utilized to compensate for the system errors in all other paths. A mmWave ISAC system is developed to validate our design. Experimental results demonstrate that the proposed scheme can support precise estimation of Doppler shift and delay, maintaining time-synchronization errors within 1 nanosecond.
Abstract:Performing striking aerobatic flight in complex environments demands manual designs of key maneuvers in advance, which is intricate and time-consuming as the horizon of the trajectory performed becomes long. This paper presents a novel framework that leverages diffusion models to automate and scale up aerobatic trajectory generation. Our key innovation is the decomposition of complex maneuvers into aerobatic primitives, which are short frame sequences that act as building blocks, featuring critical aerobatic behaviors for tractable trajectory synthesis. The model learns aerobatic primitives using historical trajectory observations as dynamic priors to ensure motion continuity, with additional conditional inputs (target waypoints and optional action constraints) integrated to enable user-editable trajectory generation. During model inference, classifier guidance is incorporated with batch sampling to achieve obstacle avoidance. Additionally, the generated outcomes are refined through post-processing with spatial-temporal trajectory optimization to ensure dynamical feasibility. Extensive simulations and real-world experiments have validated the key component designs of our method, demonstrating its feasibility for deploying on real drones to achieve long-horizon aerobatic flight.
Abstract:In this paper, we propose a novel system that integrates state-of-the-art, domain-specific large language models with advanced information retrieval techniques to deliver comprehensive and context-aware responses. Our approach facilitates seamless interaction among diverse components, enabling cross-validation of outputs to produce accurate, high-quality responses enriched with relevant data, images, tables, and other modalities. We demonstrate the system's capability to enhance response precision by leveraging a robust question-answering model, significantly improving the quality of dialogue generation. The system provides an accessible platform for real-time, high-fidelity interactions, allowing users to benefit from efficient human-computer interaction, precise retrieval, and simultaneous access to a wide range of literature and data. This dramatically improves the research efficiency of professionals in the biomedical and pharmaceutical domains and facilitates faster, more informed decision-making throughout the R\&D process. Furthermore, the system proposed in this paper is available at https://synapse-chat.patsnap.com.
Abstract:With the increasing integration of robots into human life, their role in architectural spaces where people spend most of their time has become more prominent. While motion capabilities and accurate localization for automated robots have rapidly developed, the challenge remains to generate efficient, smooth, comprehensive, and high-quality trajectories in these areas. In this paper, we propose a novel efficient planner for ground robots to autonomously navigate in large complex multi-layered architectural spaces. Considering that traversable regions typically include ground, slopes, and stairs, which are planar or nearly planar structures, we simplify the problem to navigation within and between complex intersecting planes. We first extract traversable planes from 3D point clouds through segmenting, merging, classifying, and connecting to build a plane-graph, which is lightweight but fully represents the traversable regions. We then build a trajectory optimization based on motion state trajectory and fully consider special constraints when crossing multi-layer planes to maximize the robot's maneuverability. We conduct experiments in simulated environments and test on a CubeTrack robot in real-world scenarios, validating the method's effectiveness and practicality.