Abstract:Recent breakthroughs in generative AI have transformed recommender systems through end-to-end generation. OneRec reformulates recommendation as an autoregressive generation task, achieving high Model FLOPs Utilization. While OneRec-V1 has shown significant empirical success in real-world deployment, two critical challenges hinder its scalability and performance: (1) inefficient computational allocation where 97.66% of resources are consumed by sequence encoding rather than generation, and (2) limitations in reinforcement learning relying solely on reward models. To address these challenges, we propose OneRec-V2, featuring: (1) Lazy Decoder-Only Architecture: Eliminates encoder bottlenecks, reducing total computation by 94% and training resources by 90%, enabling successful scaling to 8B parameters. (2) Preference Alignment with Real-World User Interactions: Incorporates Duration-Aware Reward Shaping and Adaptive Ratio Clipping to better align with user preferences using real-world feedback. Extensive A/B tests on Kuaishou demonstrate OneRec-V2's effectiveness, improving App Stay Time by 0.467%/0.741% while balancing multi-objective recommendations. This work advances generative recommendation scalability and alignment with real-world feedback, representing a step forward in the development of end-to-end recommender systems.
Abstract:Harnessing Large Language Models (LLMs) for generative recommendation has garnered significant attention due to LLMs' powerful capacities such as rich world knowledge and reasoning. However, a critical challenge lies in transforming recommendation data into the language space of LLMs through effective item tokenization. Existing approaches, such as ID identifiers, textual identifiers, and codebook-based identifiers, exhibit limitations in encoding semantic information, incorporating collaborative signals, or handling code assignment bias. To address these shortcomings, we propose LETTER (a LEarnable Tokenizer for generaTivE Recommendation), designed to meet the key criteria of identifiers by integrating hierarchical semantics, collaborative signals, and code assignment diversity. LETTER integrates Residual Quantized VAE for semantic regularization, a contrastive alignment loss for collaborative regularization, and a diversity loss to mitigate code assignment bias. We instantiate LETTER within two generative recommender models and introduce a ranking-guided generation loss to enhance their ranking ability. Extensive experiments across three datasets demonstrate the superiority of LETTER in item tokenization, thereby advancing the state-of-the-art in the field of generative recommendation.