Video style transfer is the process of transferring the visual style of one video to another video.
Semantic segmentation networks require large amounts of pixel-level annotated data, which are costly to obtain for real-world images. Computer graphics engines can generate synthetic images alongside their ground-truth annotations. However, models trained on such images can perform poorly on real images due to the domain gap between real and synthetic images. Style transfer methods can reduce this difference by applying a realistic style to synthetic images. Choosing effective data transformations and their sequence is difficult due to the large combinatorial search space of style transfer operators. Using multi-objective genetic algorithms, we optimize pipelines to balance structural coherence and style similarity to target domains. We study the use of paired-image metrics on individual image samples during evolution to enable rapid pipeline evaluation, as opposed to standard distributional metrics that require the generation of many images. After optimization, we evaluate the resulting Pareto front using distributional metrics and segmentation performance. We apply this approach to standard datasets in synthetic-to-real domain adaptation: from the video game GTA5 to real image datasets Cityscapes and ACDC, focusing on adverse conditions. Results demonstrate that evolutionary algorithms can propose diverse augmentation pipelines adapted to different objectives. The contribution of this work is the formulation of style transfer as a sequencing problem suitable for evolutionary optimization and the study of efficient metrics that enable feasible search in this space. The source code is available at: https://github.com/echigot/MOOSS.
Content-preserving style transfer, generating stylized outputs based on content and style references, remains a significant challenge for Diffusion Transformers (DiTs) due to the inherent entanglement of content and style features in their internal representations. In this technical report, we present TeleStyle, a lightweight yet effective model for both image and video stylization. Built upon Qwen-Image-Edit, TeleStyle leverages the base model's robust capabilities in content preservation and style customization. To facilitate effective training, we curated a high-quality dataset of distinct specific styles and further synthesized triplets using thousands of diverse, in-the-wild style categories. We introduce a Curriculum Continual Learning framework to train TeleStyle on this hybrid dataset of clean (curated) and noisy (synthetic) triplets. This approach enables the model to generalize to unseen styles without compromising precise content fidelity. Additionally, we introduce a video-to-video stylization module to enhance temporal consistency and visual quality. TeleStyle achieves state-of-the-art performance across three core evaluation metrics: style similarity, content consistency, and aesthetic quality. Code and pre-trained models are available at https://github.com/Tele-AI/TeleStyle
Synthesizing personalized talking faces that uphold and highlight a speaker's unique style while maintaining lip-sync accuracy remains a significant challenge. A primary limitation of existing approaches is the intrinsic confounding of speaker-specific talking style and semantic content within facial motions, which prevents the faithful transfer of a speaker's unique persona to arbitrary speech. In this paper, we propose MirrorTalk, a generative framework based on a conditional diffusion model, combined with a Semantically-Disentangled Style Encoder (SDSE) that can distill pure style representations from a brief reference video. To effectively utilize this representation, we further introduce a hierarchical modulation strategy within the diffusion process. This mechanism guides the synthesis by dynamically balancing the contributions of audio and style features across distinct facial regions, ensuring both precise lip-sync accuracy and expressive full-face dynamics. Extensive experiments demonstrate that MirrorTalk achieves significant improvements over state-of-the-art methods in terms of lip-sync accuracy and personalization preservation.
Videos convey richer information than images or text, capturing both spatial and temporal dynamics. However, most existing video customization methods rely on reference images or task-specific temporal priors, failing to fully exploit the rich spatio-temporal information inherent in videos, thereby limiting flexibility and generalization in video generation. To address these limitations, we propose OmniTransfer, a unified framework for spatio-temporal video transfer. It leverages multi-view information across frames to enhance appearance consistency and exploits temporal cues to enable fine-grained temporal control. To unify various video transfer tasks, OmniTransfer incorporates three key designs: Task-aware Positional Bias that adaptively leverages reference video information to improve temporal alignment or appearance consistency; Reference-decoupled Causal Learning separating reference and target branches to enable precise reference transfer while improving efficiency; and Task-adaptive Multimodal Alignment using multimodal semantic guidance to dynamically distinguish and tackle different tasks. Extensive experiments show that OmniTransfer outperforms existing methods in appearance (ID and style) and temporal transfer (camera movement and video effects), while matching pose-guided methods in motion transfer without using pose, establishing a new paradigm for flexible, high-fidelity video generation.
We present Lang2Motion, a framework for language-guided point trajectory generation by aligning motion manifolds with joint embedding spaces. Unlike prior work focusing on human motion or video synthesis, we generate explicit trajectories for arbitrary objects using motion extracted from real-world videos via point tracking. Our transformer-based auto-encoder learns trajectory representations through dual supervision: textual motion descriptions and rendered trajectory visualizations, both mapped through CLIP's frozen encoders. Lang2Motion achieves 34.2% Recall@1 on text-to-trajectory retrieval, outperforming video-based methods by 12.5 points, and improves motion accuracy by 33-52% (12.4 ADE vs 18.3-25.3) compared to video generation baselines. We demonstrate 88.3% Top-1 accuracy on human action recognition despite training only on diverse object motions, showing effective transfer across motion domains. Lang2Motion supports style transfer, semantic interpolation, and latent-space editing through CLIP-aligned trajectory representations.
We present a practical pipeline for fine-tuning open-source video diffusion transformers to synthesize cinematic scenes for television and film production from small datasets. The proposed two-stage process decouples visual style learning from motion generation. In the first stage, Low-Rank Adaptation (LoRA) modules are integrated into the cross-attention layers of the Wan2.1 I2V-14B model to adapt its visual representations using a compact dataset of short clips from Ay Yapim's historical television film El Turco. This enables efficient domain transfer within hours on a single GPU. In the second stage, the fine-tuned model produces stylistically consistent keyframes that preserve costume, lighting, and color grading, which are then temporally expanded into coherent 720p sequences through the model's video decoder. We further apply lightweight parallelization and sequence partitioning strategies to accelerate inference without quality degradation. Quantitative and qualitative evaluations using FVD, CLIP-SIM, and LPIPS metrics, supported by a small expert user study, demonstrate measurable improvements in cinematic fidelity and temporal stability over the base model. The complete training and inference pipeline is released to support reproducibility and adaptation across cinematic domains.
Recent advances in motion generation show remarkable progress. However, several limitations remain: (1) Existing pose-guided character motion transfer methods merely replicate motion without learning its style characteristics, resulting in inexpressive characters. (2) Motion style transfer methods rely heavily on motion capture data, which is difficult to obtain. (3) Generated motions sometimes violate physical laws. To address these challenges, this paper pioneers a new task: Video-to-Video Motion Personalization. We propose a novel framework, PersonaAnimator, which learns personalized motion patterns directly from unconstrained videos. This enables personalized motion transfer. To support this task, we introduce PersonaVid, the first video-based personalized motion dataset. It contains 20 motion content categories and 120 motion style categories. We further propose a Physics-aware Motion Style Regularization mechanism to enforce physical plausibility in the generated motions. Extensive experiments show that PersonaAnimator outperforms state-of-the-art motion transfer methods and sets a new benchmark for the Video-to-Video Motion Personalization task.
Unified multi-modal encoders that bind vision, audio, and other sensors into a shared embedding space are attractive building blocks for robot perception and decision-making. However, on-robot deployment exposes the vision branch to adversarial and natural corruptions, making robustness a prerequisite for safety. Prior defenses typically align clean and adversarial features within CLIP-style encoders and overlook broader cross-modal correspondence, yielding modest gains and often degrading zero-shot transfer. We introduce RLBind, a two-stage adversarial-invariant cross-modal alignment framework for robust unified embeddings. Stage 1 performs unsupervised fine-tuning on clean-adversarial pairs to harden the visual encoder. Stage 2 leverages cross-modal correspondence by minimizing the discrepancy between clean/adversarial features and a text anchor, while enforcing class-wise distributional alignment across modalities. Extensive experiments on Image, Audio, Thermal, and Video data show that RLBind consistently outperforms the LanguageBind backbone and standard fine-tuning baselines in both clean accuracy and norm-bounded adversarial robustness. By improving resilience without sacrificing generalization, RLBind provides a practical path toward safer multi-sensor perception stacks for embodied robots in navigation, manipulation, and other autonomy settings.




Neural artistic style transfers and blends the content and style representation of one image with the style of another. This enables artists to create unique innovative visuals and enhances artistic expression in various fields including art, design, and film. Color transfer algorithms are an important in digital image processing by adjusting the color information in a target image based on the colors in the source image. Color transfer enhances images and videos in film and photography, and can aid in image correction. We introduce a methodology that combines neural artistic style with color transfer. The method uses the Kullback-Leibler (KL) divergence to quantitatively evaluate color and luminance histogram matching algorithms including Reinhard global color transfer, iteration distribution transfer (IDT), IDT with regrain, Cholesky, and PCA between the original and neural artistic style transferred image using deep learning. We estimate the color channel kernel densities. Various experiments are performed to evaluate the KL of these algorithms and their color histograms for style to content transfer.
Mesh models have become increasingly accessible for numerous cities; however, the lack of realistic textures restricts their application in virtual urban navigation and autonomous driving. To address this, this paper proposes MeSS (Meshbased Scene Synthesis) for generating high-quality, styleconsistent outdoor scenes with city mesh models serving as the geometric prior. While image and video diffusion models can leverage spatial layouts (such as depth maps or HD maps) as control conditions to generate street-level perspective views, they are not directly applicable to 3D scene generation. Video diffusion models excel at synthesizing consistent view sequences that depict scenes but often struggle to adhere to predefined camera paths or align accurately with rendered control videos. In contrast, image diffusion models, though unable to guarantee cross-view visual consistency, can produce more geometry-aligned results when combined with ControlNet. Building on this insight, our approach enhances image diffusion models by improving cross-view consistency. The pipeline comprises three key stages: first, we generate geometrically consistent sparse views using Cascaded Outpainting ControlNets; second, we propagate denser intermediate views via a component dubbed AGInpaint; and third, we globally eliminate visual inconsistencies (e.g., varying exposure) using the GCAlign module. Concurrently with generation, a 3D Gaussian Splatting (3DGS) scene is reconstructed by initializing Gaussian balls on the mesh surface. Our method outperforms existing approaches in both geometric alignment and generation quality. Once synthesized, the scene can be rendered in diverse styles through relighting and style transfer techniques.