Abstract:With more than 11 times as many pageviews as the next, English Wikipedia dominates global knowledge access relative to other language editions. Readers are prone to assuming English Wikipedia as a superset of all language editions, leading many to prefer it even when their primary language is not English. Other language editions, however, comprise complementary facts rooted in their respective cultures and media environments, which are marginalized in English Wikipedia. While Wikipedia's user interface enables switching between language editions through its Interlanguage Link (ILL) system, it does not reveal to readers that other language editions contain valuable, complementary information. We present WikiGap, a system that surfaces complementary facts sourced from other Wikipedias within the English Wikipedia interface. Specifically, by combining a recent multilingual information-gap discovery method with a user-centered design, WikiGap enables access to complementary information from French, Russian, and Chinese Wikipedia. In a mixed-methods study (n=21), WikiGap significantly improved fact-finding accuracy, reduced task time, and received a 32-point higher usability score relative to Wikipedia's current ILL-based navigation system. Participants reported increased awareness of the availability of complementary information in non-English editions and reconsidered the completeness of English Wikipedia. WikiGap thus paves the way for improved epistemic equity across language editions.
Abstract:Generating accurate multilingual text with diffusion models has long been desired but remains challenging. Recent methods have made progress in rendering text in a single language, but rendering arbitrary languages is still an unexplored area. This paper introduces EasyText, a text rendering framework based on DiT (Diffusion Transformer), which connects denoising latents with multilingual character tokens encoded as character tokens. We propose character positioning encoding and position encoding interpolation techniques to achieve controllable and precise text rendering. Additionally, we construct a large-scale synthetic text image dataset with 1 million multilingual image-text annotations as well as a high-quality dataset of 20K annotated images, which are used for pretraining and fine-tuning respectively. Extensive experiments and evaluations demonstrate the effectiveness and advancement of our approach in multilingual text rendering, visual quality, and layout-aware text integration.
Abstract:As Large Language Models (LLMs) become integral to software development workflows, their ability to generate structured outputs has become critically important. We introduce StructEval, a comprehensive benchmark for evaluating LLMs' capabilities in producing both non-renderable (JSON, YAML, CSV) and renderable (HTML, React, SVG) structured formats. Unlike prior benchmarks, StructEval systematically evaluates structural fidelity across diverse formats through two paradigms: 1) generation tasks, producing structured output from natural language prompts, and 2) conversion tasks, translating between structured formats. Our benchmark encompasses 18 formats and 44 types of task, with novel metrics for format adherence and structural correctness. Results reveal significant performance gaps, even state-of-the-art models like o1-mini achieve only 75.58 average score, with open-source alternatives lagging approximately 10 points behind. We find generation tasks more challenging than conversion tasks, and producing correct visual content more difficult than generating text-only structures.
Abstract:Large language models (LLMs) encounter difficulties in knowledge-intensive multi-step reasoning (KIMSR) tasks. One challenge is how to effectively extract and represent rationale evidence. The current methods often extract semantically relevant but logically irrelevant evidence, resulting in flawed reasoning and inaccurate responses. We propose a two-way evidence self-alignment (TW-ESA) module, which utilizes the mutual alignment between strict reasoning and LLM reasoning to enhance its understanding of the causal logic of evidence, thereby addressing the first challenge. Another challenge is how to utilize the rationale evidence and LLM's intrinsic knowledge for accurate reasoning when the evidence contains uncertainty. We propose a dual-gated reasoning enhancement (DGR) module to gradually fuse useful knowledge of LLM within strict reasoning, which can enable the model to perform accurate reasoning by focusing on causal elements in the evidence and exhibit greater robustness. The two modules are collaboratively trained in a unified framework ESA-DGR. Extensive experiments on three diverse and challenging KIMSR datasets reveal that ESA-DGR significantly surpasses state-of-the-art LLM-based fine-tuning methods, with remarkable average improvements of 4% in exact match (EM) and 5% in F1 score. The implementation code is available at https://anonymous.4open.science/r/ESA-DGR-2BF8.
Abstract:Cinematography is a cornerstone of film production and appreciation, shaping mood, emotion, and narrative through visual elements such as camera movement, shot composition, and lighting. Despite recent progress in multimodal large language models (MLLMs) and video generation models, the capacity of current models to grasp and reproduce cinematographic techniques remains largely uncharted, hindered by the scarcity of expert-annotated data. To bridge this gap, we present CineTechBench, a pioneering benchmark founded on precise, manual annotation by seasoned cinematography experts across key cinematography dimensions. Our benchmark covers seven essential aspects-shot scale, shot angle, composition, camera movement, lighting, color, and focal length-and includes over 600 annotated movie images and 120 movie clips with clear cinematographic techniques. For the understanding task, we design question answer pairs and annotated descriptions to assess MLLMs' ability to interpret and explain cinematographic techniques. For the generation task, we assess advanced video generation models on their capacity to reconstruct cinema-quality camera movements given conditions such as textual prompts or keyframes. We conduct a large-scale evaluation on 15+ MLLMs and 5+ video generation models. Our results offer insights into the limitations of current models and future directions for cinematography understanding and generation in automatically film production and appreciation. The code and benchmark can be accessed at https://github.com/PRIS-CV/CineTechBench.
Abstract:Playing video games requires perception, memory, and planning, exactly the faculties modern large language model (LLM) agents are expected to master. We study the major challenges in using popular video games to evaluate modern LLMs and find that directly dropping LLMs into games cannot make an effective evaluation, for three reasons -- brittle vision perception, prompt sensitivity, and potential data contamination. We introduce lmgame-Bench to turn games into reliable evaluations. lmgame-Bench features a suite of platformer, puzzle, and narrative games delivered through a unified Gym-style API and paired with lightweight perception and memory scaffolds, and is designed to stabilize prompt variance and remove contamination. Across 13 leading models, we show lmgame-Bench is challenging while still separating models well. Correlation analysis shows that every game probes a unique blend of capabilities often tested in isolation elsewhere. More interestingly, performing reinforcement learning on a single game from lmgame-Bench transfers both to unseen games and to external planning tasks. Our evaluation code is available at https://github.com/lmgame-org/GamingAgent/lmgame-bench.
Abstract:Advances in deep generative modelling have made it increasingly plausible to train human-level embodied agents. Yet progress has been limited by the absence of large-scale, real-time, multi-modal, and socially interactive datasets that reflect the sensory-motor complexity of natural environments. To address this, we present PLAICraft, a novel data collection platform and dataset capturing multiplayer Minecraft interactions across five time-aligned modalities: video, game output audio, microphone input audio, mouse, and keyboard actions. Each modality is logged with millisecond time precision, enabling the study of synchronous, embodied behaviour in a rich, open-ended world. The dataset comprises over 10,000 hours of gameplay from more than 10,000 global participants.\footnote{We have done a privacy review for the public release of an initial 200-hour subset of the dataset, with plans to release most of the dataset over time.} Alongside the dataset, we provide an evaluation suite for benchmarking model capabilities in object recognition, spatial awareness, language grounding, and long-term memory. PLAICraft opens a path toward training and evaluating agents that act fluently and purposefully in real time, paving the way for truly embodied artificial intelligence.
Abstract:Keyword spotting (KWS) is a key component of smart devices, enabling efficient and intuitive audio interaction. However, standard KWS systems deployed on embedded devices often suffer performance degradation under real-world operating conditions. Resilient KWS systems address this issue by enabling dynamic adaptation, with applications such as adding or replacing keywords, adjusting to specific users, and improving noise robustness. However, deploying resilient, standalone KWS systems with low latency on resource-constrained devices remains challenging due to limited memory and computational resources. This study proposes a low computational approach for continuous noise adaptation of pretrained neural networks used for KWS classification, requiring only 1-shot learning and one epoch. The proposed method was assessed using two pretrained models and three real-world noise sources at signal-to-noise ratios (SNRs) ranging from 24 to -3 dB. The adapted models consistently outperformed the pretrained models across all scenarios, especially at SNR $\leq$ 18 dB, achieving accuracy improvements of 4.9% to 46.0%. These results highlight the efficacy of the proposed methodology while being lightweight enough for deployment on resource-constrained devices.
Abstract:Crack segmentation can play a critical role in Structural Health Monitoring (SHM) by enabling accurate identification of crack size and location, which allows to monitor structural damages over time. However, deploying deep learning models for crack segmentation on resource-constrained microcontrollers presents significant challenges due to limited memory, computational power, and energy resources. To address these challenges, this study explores lightweight U-Net architectures tailored for TinyML applications, focusing on three optimization strategies: filter number reduction, network depth reduction, and the use of Depthwise Separable Convolutions (DWConv2D). Our results demonstrate that reducing convolution kernels and network depth significantly reduces RAM and Flash requirement, and inference times, albeit with some accuracy trade-offs. Specifically, by reducing the filer number to 25%, the network depth to four blocks, and utilizing depthwise convolutions, a good compromise between segmentation performance and resource consumption is achieved. This makes the network particularly suitable for low-power TinyML applications. This study not only advances TinyML-based crack segmentation but also provides the possibility for energy-autonomous edge SHM systems.
Abstract:Keyword spotting (KWS) is an essential function that enables interaction with ubiquitous smart devices. However, in resource-limited devices, KWS models are often static and can thus not adapt to new scenarios, such as added keywords. To overcome this problem, we propose a Continual Learning (CL) approach for KWS built on Binary Neural Networks (BNNs). The framework leverages the reduced computation and memory requirements of BNNs while incorporating techniques that enable the seamless integration of new keywords over time. This study evaluates seven CL techniques on a 16-class use case, reporting an accuracy exceeding 95% for a single additional keyword and up to 86% for four additional classes. Sensitivity to the amount of training samples in the CL phase, and differences in computational complexities are being evaluated. These evaluations demonstrate that batch-based algorithms are more sensitive to the CL dataset size, and that differences between the computational complexities are insignificant. These findings highlight the potential of developing an effective and computationally efficient technique for continuously integrating new keywords in KWS applications that is compatible with resource-constrained devices.