Nowadays, training and evaluating DeepResearch-generated reports remain challenging due to the lack of verifiable reward signals. Accordingly, rubric-based evaluation has become a common practice. However, existing approaches either rely on coarse, pre-defined rubrics that lack sufficient granularity, or depend on manually constructed query-specific rubrics that are costly and difficult to scale. In this paper, we propose a pipeline to train human-preference-aligned query-specific rubric generators tailored for DeepResearch report generation. We first construct a dataset of DeepResearch-style queries annotated with human preferences over paired reports, and train rubric generators via reinforcement learning with a hybrid reward combining human preference supervision and LLM-based rubric evaluation. To better handle long-horizon reasoning, we further introduce a Multi-agent Markov-state (MaMs) workflow for report generation. We empirically show that our proposed rubric generators deliver more discriminative and better human-aligned supervision than existing rubric design strategies. Moreover, when integrated into the MaMs training framework, DeepResearch systems equipped with our rubric generators consistently outperform all open-source baselines on the DeepResearch Bench and achieve performance comparable to that of leading closed-source models.
Temporal comparison of chest X-rays is fundamental to clinical radiology, enabling detection of disease progression, treatment response, and new findings. While vision-language models have advanced single-image report generation and visual grounding, no existing method combines these capabilities for temporal change detection. We introduce Temporal Radiology with Anatomical Change Explanation (TRACE), the first model that jointly performs temporal comparison, change classification, and spatial localization. Given a prior and current chest X-ray, TRACE generates natural language descriptions of interval changes (worsened, improved, stable) while grounding each finding with bounding box coordinates. TRACE demonstrates effective spatial localization with over 90% grounding accuracy, establishing a foundation for this challenging new task. Our ablation study uncovers an emergent capability: change detection arises only when temporal comparison and spatial grounding are jointly learned, as neither alone enables meaningful change detection. This finding suggests that grounding provides a spatial attention mechanism essential for temporal reasoning.
Deep Research Agents (DRAs) have demonstrated remarkable capabilities in autonomous information retrieval and report generation, showing great potential to assist humans in complex research tasks. Current evaluation frameworks primarily rely on LLM-generated references or LLM-derived evaluation dimensions. While these approaches offer scalability, they often lack the reliability of expert-verified content and struggle to provide objective, fine-grained assessments of critical dimensions. To bridge this gap, we introduce Wiki Live Challenge (WLC), a live benchmark that leverages the newest Wikipedia Good Articles (GAs) as expert-level references. Wikipedia's strict standards for neutrality, comprehensiveness, and verifiability serve as a great challenge for DRAs, with GAs representing the pinnacle of which. We curate a dataset of 100 recent Good Articles and propose Wiki Eval, a comprehensive evaluation framework comprising a fine-grained evaluation method with 39 criteria for writing quality and rigorous metrics for factual verifiability. Extensive experiments on various DRA systems demonstrate a significant gap between current DRAs and human expert-level Wikipedia articles, validating the effectiveness of WLC in advancing agent research. We release our benchmark at https://github.com/WangShao2000/Wiki_Live_Challenge
Medical audio classification remains challenging due to low signal-to-noise ratios, subtle discriminative features, and substantial intra-class variability, often compounded by class imbalance and limited training data. Synthetic data augmentation has been proposed as a potential strategy to mitigate these constraints; however, prior studies report inconsistent methodological approaches and mixed empirical results. In this preliminary study, we explore the impact of synthetic augmentation on respiratory sound classification using a baseline deep convolutional neural network trained on a moderately imbalanced dataset (73%:27%). Three generative augmentation strategies (variational autoencoders, generative adversarial networks, and diffusion models) were assessed under controlled experimental conditions. The baseline model without augmentation achieved an F1-score of 0.645. Across individual augmentation strategies, performance gains were not observed, with several configurations demonstrating neutral or degraded classification performance. Only an ensemble of augmented models yielded a modest improvement in F1-score (0.664). These findings suggest that, for medical audio classification, synthetic augmentation may not consistently enhance performance when applied to a standard CNN classifier. Future work should focus on delineating task-specific data characteristics, model-augmentation compatibility, and evaluation frameworks necessary for synthetic augmentation to be effective in medical audio applications.
This vision paper articulates a long-term research agenda for formal methods at the intersection with artificial intelligence, outlining multiple conceptual and technical dimensions and reporting on our ongoing work toward realising this agenda. It advances a forward-looking perspective on the next generation of formal methods based on the integration of automated contract synthesis, semantic artifact reuse, and refinement-based theory. We argue that future verification systems must move beyond isolated correctness proofs toward a cumulative, knowledge-driven paradigm in which specifications, contracts, and proofs are continuously synthesised and transferred across systems. To support this shift, we outline a hybrid framework combining large language models with graph-based representations to enable scalable semantic matching and principled reuse of verification artifacts. Learning-based components provide semantic guidance across heterogeneous notations and abstraction levels, while symbolic matching ensures formal soundness. Grounded in compositional reasoning, this vision points toward verification ecosystems that evolve systematically, leveraging past verification efforts to accelerate future assurance.
LLM-based agents have demonstrated strong potential for autonomous machine learning, yet their applicability to health data remains limited. Existing systems often struggle to generalize across heterogeneous health data modalities, rely heavily on predefined solution templates with insufficient adaptation to task-specific objectives, and largely overlook uncertainty estimation, which is essential for reliable decision-making in healthcare. To address these challenges, we propose \textit{AutoHealth}, a novel uncertainty-aware multi-agent system that autonomously models health data and assesses model reliability. \textit{AutoHealth} employs closed-loop coordination among five specialized agents to perform data exploration, task-conditioned model construction, training, and optimization, while jointly prioritizing predictive performance and uncertainty quantification. Beyond producing ready-to-use models, the system generates comprehensive reports to support trustworthy interpretation and risk-aware decision-making. To rigorously evaluate its effectiveness, we curate a challenging real-world benchmark comprising 17 tasks across diverse data modalities and learning settings. \textit{AutoHealth} completes all tasks and outperforms state-of-the-art baselines by 29.2\% in prediction performance and 50.2\% in uncertainty estimation.
Rapid advancements in large language models (LLMs) have sparked the question whether these models possess some form of consciousness. To tackle this challenge, Butlin et al. (2023) introduced a list of indicators for consciousness in artificial systems based on neuroscientific theories. In this work, we evaluate a key indicator from this list, called HOT-3, which tests for agency guided by a general belief-formation and action selection system that updates beliefs based on meta-cognitive monitoring. We view beliefs as representations in the model's latent space that emerge in response to a given input, and introduce a metric to quantify their dominance during generation. Analyzing the dynamics between competing beliefs across models and tasks reveals three key findings: (1) external manipulations systematically modulate internal belief formation, (2) belief formation causally drives the model's action selection, and (3) models can monitor and report their own belief states. Together, these results provide empirical support for the existence of belief-guided agency and meta-cognitive monitoring in LLMs. More broadly, our work lays methodological groundwork for investigating the emergence of agency, beliefs, and meta-cognition in LLMs.
We introduce FSVideo, a fast speed transformer-based image-to-video (I2V) diffusion framework. We build our framework on the following key components: 1.) a new video autoencoder with highly-compressed latent space ($64\times64\times4$ spatial-temporal downsampling ratio), achieving competitive reconstruction quality; 2.) a diffusion transformer (DIT) architecture with a new layer memory design to enhance inter-layer information flow and context reuse within DIT, and 3.) a multi-resolution generation strategy via a few-step DIT upsampler to increase video fidelity. Our final model, which contains a 14B DIT base model and a 14B DIT upsampler, achieves competitive performance against other popular open-source models, while being an order of magnitude faster. We discuss our model design as well as training strategies in this report.
The detection of online influence operations -- coordinated campaigns by malicious actors to spread narratives -- has traditionally depended on content analysis or network features. These approaches are increasingly brittle as generative models produce convincing text, platforms restrict access to behavioral data, and actors migrate to less-regulated spaces. We introduce a platform-agnostic framework that identifies malicious actors from their behavioral policies by modeling user activity as sequential decision processes. We apply this approach to 12,064 Reddit users, including 99 accounts linked to the Russian Internet Research Agency in Reddit's 2017 transparency report, analyzing over 38 million activity steps from 2015-2018. Activity-based representations, which model how users act rather than what they post, consistently outperform content models in detecting malicious accounts. When distinguishing trolls -- users engaged in coordinated manipulation -- from ordinary users, policy-based classifiers achieve a median macro-$F_1$ of 94.9%, compared to 91.2% for text embeddings. Policy features also enable earlier detection from short traces and degrade more gracefully under evasion strategies or data corruption. These findings show that behavioral dynamics encode stable, discriminative signals of manipulation and point to resilient, cross-platform detection strategies in the era of synthetic content and limited data access.
Recent coding agents can generate complete codebases from simple prompts, yet existing evaluations focus on issue-level bug fixing and lag behind end-to-end development. We introduce ProjDevBench, an end-to-end benchmark that provides project requirements to coding agents and evaluates the resulting repositories. Combining Online Judge (OJ) testing with LLM-assisted code review, the benchmark evaluates agents on (1) system architecture design, (2) functional correctness, and (3) iterative solution refinement. We curate 20 programming problems across 8 categories, covering both concept-oriented tasks and real-world application scenarios, and evaluate six coding agents built on different LLM backends. Our evaluation reports an overall acceptance rate of 27.38%: agents handle basic functionality and data structures but struggle with complex system design, time complexity optimization, and resource management. Our benchmark is available at https://github.com/zsworld6/projdevbench.