Alert button
Picture for Chang Xu

Chang Xu

Alert button

Stealthy Physical Masked Face Recognition Attack via Adversarial Style Optimization

Sep 18, 2023
Huihui Gong, Minjing Dong, Siqi Ma, Seyit Camtepe, Surya Nepal, Chang Xu

Deep neural networks (DNNs) have achieved state-of-the-art performance on face recognition (FR) tasks in the last decade. In real scenarios, the deployment of DNNs requires taking various face accessories into consideration, like glasses, hats, and masks. In the COVID-19 pandemic era, wearing face masks is one of the most effective ways to defend against the novel coronavirus. However, DNNs are known to be vulnerable to adversarial examples with a small but elaborated perturbation. Thus, a facial mask with adversarial perturbations may pose a great threat to the widely used deep learning-based FR models. In this paper, we consider a challenging adversarial setting: targeted attack against FR models. We propose a new stealthy physical masked FR attack via adversarial style optimization. Specifically, we train an adversarial style mask generator that hides adversarial perturbations inside style masks. Moreover, to ameliorate the phenomenon of sub-optimization with one fixed style, we propose to discover the optimal style given a target through style optimization in a continuous relaxation manner. We simultaneously optimize the generator and the style selection for generating strong and stealthy adversarial style masks. We evaluated the effectiveness and transferability of our proposed method via extensive white-box and black-box digital experiments. Furthermore, we also conducted physical attack experiments against local FR models and online platforms.

* 11 pages, 7 figures 
Viaarxiv icon

Reducing Adversarial Training Cost with Gradient Approximation

Sep 18, 2023
Huihui Gong, Shuo Yang, Siqi Ma, Seyit Camtepe, Surya Nepal, Chang Xu

Deep learning models have achieved state-of-the-art performances in various domains, while they are vulnerable to the inputs with well-crafted but small perturbations, which are named after adversarial examples (AEs). Among many strategies to improve the model robustness against AEs, Projected Gradient Descent (PGD) based adversarial training is one of the most effective methods. Unfortunately, the prohibitive computational overhead of generating strong enough AEs, due to the maximization of the loss function, sometimes makes the regular PGD adversarial training impractical when using larger and more complicated models. In this paper, we propose that the adversarial loss can be approximated by the partial sum of Taylor series. Furthermore, we approximate the gradient of adversarial loss and propose a new and efficient adversarial training method, adversarial training with gradient approximation (GAAT), to reduce the cost of building up robust models. Additionally, extensive experiments demonstrate that this efficiency improvement can be achieved without any or with very little loss in accuracy on natural and adversarial examples, which show that our proposed method saves up to 60\% of the training time with comparable model test accuracy on MNIST, CIFAR-10 and CIFAR-100 datasets.

* 7 pages, 2 figures 
Viaarxiv icon

Efficient Transfer Learning in Diffusion Models via Adversarial Noise

Aug 23, 2023
Xiyu Wang, Baijiong Lin, Daochang Liu, Chang Xu

Figure 1 for Efficient Transfer Learning in Diffusion Models via Adversarial Noise
Figure 2 for Efficient Transfer Learning in Diffusion Models via Adversarial Noise
Figure 3 for Efficient Transfer Learning in Diffusion Models via Adversarial Noise
Figure 4 for Efficient Transfer Learning in Diffusion Models via Adversarial Noise

Diffusion Probabilistic Models (DPMs) have demonstrated substantial promise in image generation tasks but heavily rely on the availability of large amounts of training data. Previous works, like GANs, have tackled the limited data problem by transferring pre-trained models learned with sufficient data. However, those methods are hard to be utilized in DPMs since the distinct differences between DPM-based and GAN-based methods, showing in the unique iterative denoising process integral and the need for many timesteps with no-targeted noise in DPMs. In this paper, we propose a novel DPMs-based transfer learning method, TAN, to address the limited data problem. It includes two strategies: similarity-guided training, which boosts transfer with a classifier, and adversarial noise selection which adaptive chooses targeted noise based on the input image. Extensive experiments in the context of few-shot image generation tasks demonstrate that our method is not only efficient but also excels in terms of image quality and diversity when compared to existing GAN-based and DDPM-based methods.

Viaarxiv icon

Boosting Diffusion Models with an Adaptive Momentum Sampler

Aug 23, 2023
Xiyu Wang, Anh-Dung Dinh, Daochang Liu, Chang Xu

Figure 1 for Boosting Diffusion Models with an Adaptive Momentum Sampler
Figure 2 for Boosting Diffusion Models with an Adaptive Momentum Sampler
Figure 3 for Boosting Diffusion Models with an Adaptive Momentum Sampler
Figure 4 for Boosting Diffusion Models with an Adaptive Momentum Sampler

Diffusion probabilistic models (DPMs) have been shown to generate high-quality images without the need for delicate adversarial training. However, the current sampling process in DPMs is prone to violent shaking. In this paper, we present a novel reverse sampler for DPMs inspired by the widely-used Adam optimizer. Our proposed sampler can be readily applied to a pre-trained diffusion model, utilizing momentum mechanisms and adaptive updating to smooth the reverse sampling process and ensure stable generation, resulting in outputs of enhanced quality. By implicitly reusing update directions from early steps, our proposed sampler achieves a better balance between high-level semantics and low-level details. Additionally, this sampler is flexible and can be easily integrated into pre-trained DPMs regardless of the sampler used during training. Our experimental results on multiple benchmarks demonstrate that our proposed reverse sampler yields remarkable improvements over different baselines. We will make the source code available.

Viaarxiv icon

A Benchmark Study on Calibration

Aug 23, 2023
Linwei Tao, Younan Zhu, Haolan Guo, Minjing Dong, Chang Xu

Deep neural networks are increasingly utilized in various machine learning tasks. However, as these models grow in complexity, they often face calibration issues, despite enhanced prediction accuracy. Many studies have endeavored to improve calibration performance through data preprocessing, the use of specific loss functions, and training frameworks. Yet, investigations into calibration properties have been somewhat overlooked. Our study leverages the Neural Architecture Search (NAS) search space, offering an exhaustive model architecture space for thorough calibration properties exploration. We specifically create a model calibration dataset. This dataset evaluates 90 bin-based and 12 additional calibration measurements across 117,702 unique neural networks within the widely employed NATS-Bench search space. Our analysis aims to answer several longstanding questions in the field, using our proposed dataset: (i) Can model calibration be generalized across different tasks? (ii) Can robustness be used as a calibration measurement? (iii) How reliable are calibration metrics? (iv) Does a post-hoc calibration method affect all models uniformly? (v) How does calibration interact with accuracy? (vi) What is the impact of bin size on calibration measurement? (vii) Which architectural designs are beneficial for calibration? Additionally, our study bridges an existing gap by exploring calibration within NAS. By providing this dataset, we enable further research into NAS calibration. As far as we are aware, our research represents the first large-scale investigation into calibration properties and the premier study of calibration issues within NAS.

* 39 pages, 35 figures 
Viaarxiv icon

CoNe: Contrast Your Neighbours for Supervised Image Classification

Aug 21, 2023
Mingkai Zheng, Shan You, Lang Huang, Xiu Su, Fei Wang, Chen Qian, Xiaogang Wang, Chang Xu

Figure 1 for CoNe: Contrast Your Neighbours for Supervised Image Classification
Figure 2 for CoNe: Contrast Your Neighbours for Supervised Image Classification
Figure 3 for CoNe: Contrast Your Neighbours for Supervised Image Classification
Figure 4 for CoNe: Contrast Your Neighbours for Supervised Image Classification

Image classification is a longstanding problem in computer vision and machine learning research. Most recent works (e.g. SupCon , Triplet, and max-margin) mainly focus on grouping the intra-class samples aggressively and compactly, with the assumption that all intra-class samples should be pulled tightly towards their class centers. However, such an objective will be very hard to achieve since it ignores the intra-class variance in the dataset. (i.e. different instances from the same class can have significant differences). Thus, such a monotonous objective is not sufficient. To provide a more informative objective, we introduce Contrast Your Neighbours (CoNe) - a simple yet practical learning framework for supervised image classification. Specifically, in CoNe, each sample is not only supervised by its class center but also directly employs the features of its similar neighbors as anchors to generate more adaptive and refined targets. Moreover, to further boost the performance, we propose ``distributional consistency" as a more informative regularization to enable similar instances to have a similar probability distribution. Extensive experimental results demonstrate that CoNe achieves state-of-the-art performance across different benchmark datasets, network architectures, and settings. Notably, even without a complicated training recipe, our CoNe achieves 80.8\% Top-1 accuracy on ImageNet with ResNet-50, which surpasses the recent Timm training recipe (80.4\%). Code and pre-trained models are available at \href{https://github.com/mingkai-zheng/CoNe}{https://github.com/mingkai-zheng/CoNe}.

Viaarxiv icon

Microstructure-Empowered Stock Factor Extraction and Utilization

Aug 16, 2023
Xianfeng Jiao, Zizhong Li, Chang Xu, Yang Liu, Weiqing Liu, Jiang Bian

Figure 1 for Microstructure-Empowered Stock Factor Extraction and Utilization
Figure 2 for Microstructure-Empowered Stock Factor Extraction and Utilization
Figure 3 for Microstructure-Empowered Stock Factor Extraction and Utilization
Figure 4 for Microstructure-Empowered Stock Factor Extraction and Utilization

High-frequency quantitative investment is a crucial aspect of stock investment. Notably, order flow data plays a critical role as it provides the most detailed level of information among high-frequency trading data, including comprehensive data from the order book and transaction records at the tick level. The order flow data is extremely valuable for market analysis as it equips traders with essential insights for making informed decisions. However, extracting and effectively utilizing order flow data present challenges due to the large volume of data involved and the limitations of traditional factor mining techniques, which are primarily designed for coarser-level stock data. To address these challenges, we propose a novel framework that aims to effectively extract essential factors from order flow data for diverse downstream tasks across different granularities and scenarios. Our method consists of a Context Encoder and an Factor Extractor. The Context Encoder learns an embedding for the current order flow data segment's context by considering both the expected and actual market state. In addition, the Factor Extractor uses unsupervised learning methods to select such important signals that are most distinct from the majority within the given context. The extracted factors are then utilized for downstream tasks. In empirical studies, our proposed framework efficiently handles an entire year of stock order flow data across diverse scenarios, offering a broader range of applications compared to existing tick-level approaches that are limited to only a few days of stock data. We demonstrate that our method extracts superior factors from order flow data, enabling significant improvement for stock trend prediction and order execution tasks at the second and minute level.

Viaarxiv icon

SimMatchV2: Semi-Supervised Learning with Graph Consistency

Aug 13, 2023
Mingkai Zheng, Shan You, Lang Huang, Chen Luo, Fei Wang, Chen Qian, Chang Xu

Figure 1 for SimMatchV2: Semi-Supervised Learning with Graph Consistency
Figure 2 for SimMatchV2: Semi-Supervised Learning with Graph Consistency
Figure 3 for SimMatchV2: Semi-Supervised Learning with Graph Consistency
Figure 4 for SimMatchV2: Semi-Supervised Learning with Graph Consistency

Semi-Supervised image classification is one of the most fundamental problem in computer vision, which significantly reduces the need for human labor. In this paper, we introduce a new semi-supervised learning algorithm - SimMatchV2, which formulates various consistency regularizations between labeled and unlabeled data from the graph perspective. In SimMatchV2, we regard the augmented view of a sample as a node, which consists of a label and its corresponding representation. Different nodes are connected with the edges, which are measured by the similarity of the node representations. Inspired by the message passing and node classification in graph theory, we propose four types of consistencies, namely 1) node-node consistency, 2) node-edge consistency, 3) edge-edge consistency, and 4) edge-node consistency. We also uncover that a simple feature normalization can reduce the gaps of the feature norm between different augmented views, significantly improving the performance of SimMatchV2. Our SimMatchV2 has been validated on multiple semi-supervised learning benchmarks. Notably, with ResNet-50 as our backbone and 300 epochs of training, SimMatchV2 achieves 71.9\% and 76.2\% Top-1 Accuracy with 1\% and 10\% labeled examples on ImageNet, which significantly outperforms the previous methods and achieves state-of-the-art performance. Code and pre-trained models are available at \href{https://github.com/mingkai-zheng/SimMatchV2}{https://github.com/mingkai-zheng/SimMatchV2}.

Viaarxiv icon

Fingerprints of Generative Models in the Frequency Domain

Jul 29, 2023
Tianyun Yang, Juan Cao, Danding Wang, Chang Xu

It is verified in existing works that CNN-based generative models leave unique fingerprints on generated images. There is a lack of analysis about how they are formed in generative models. Interpreting network components in the frequency domain, we derive sources for frequency distribution and grid-like pattern discrepancies exhibited on the spectrum. These insights are leveraged to develop low-cost synthetic models, which generate images emulating the frequency patterns observed in real generative models. The resulting fingerprint extractor pre-trained on synthetic data shows superior transferability in verifying, identifying, and analyzing the relationship of real CNN-based generative models such as GAN, VAE, Flow, and diffusion.

* 15 pages, 11 figures 
Viaarxiv icon

Re-mine, Learn and Reason: Exploring the Cross-modal Semantic Correlations for Language-guided HOI detection

Jul 25, 2023
Yichao Cao, Xiu Su, Qingfei Tang, Feng Yang, Shan You, Xiaobo Lu, Chang Xu

Human-Object Interaction (HOI) detection is a challenging computer vision task that requires visual models to address the complex interactive relationship between humans and objects and predict HOI triplets. Despite the challenges posed by the numerous interaction combinations, they also offer opportunities for multimodal learning of visual texts. In this paper, we present a systematic and unified framework (RmLR) that enhances HOI detection by incorporating structured text knowledge. Firstly, we qualitatively and quantitatively analyze the loss of interaction information in the two-stage HOI detector and propose a re-mining strategy to generate more comprehensive visual representation.Secondly, we design more fine-grained sentence- and word-level alignment and knowledge transfer strategies to effectively address the many-to-many matching problem between multiple interactions and multiple texts.These strategies alleviate the matching confusion problem that arises when multiple interactions occur simultaneously, thereby improving the effectiveness of the alignment process. Finally, HOI reasoning by visual features augmented with textual knowledge substantially improves the understanding of interactions. Experimental results illustrate the effectiveness of our approach, where state-of-the-art performance is achieved on public benchmarks. We further analyze the effects of different components of our approach to provide insights into its efficacy.

* ICCV2023 
Viaarxiv icon