Abstract:Synthetic Electronic Health Record (EHR) time-series generation is crucial for advancing clinical machine learning models, as it helps address data scarcity by providing more training data. However, most existing approaches focus primarily on replicating statistical distributions and temporal dependencies of real-world data. We argue that fidelity to observed data alone does not guarantee better model performance, as common patterns may dominate, limiting the representation of rare but important conditions. This highlights the need for generate synthetic samples to improve performance of specific clinical models to fulfill their target outcomes. To address this, we propose TarDiff, a novel target-oriented diffusion framework that integrates task-specific influence guidance into the synthetic data generation process. Unlike conventional approaches that mimic training data distributions, TarDiff optimizes synthetic samples by quantifying their expected contribution to improving downstream model performance through influence functions. Specifically, we measure the reduction in task-specific loss induced by synthetic samples and embed this influence gradient into the reverse diffusion process, thereby steering the generation towards utility-optimized data. Evaluated on six publicly available EHR datasets, TarDiff achieves state-of-the-art performance, outperforming existing methods by up to 20.4% in AUPRC and 18.4% in AUROC. Our results demonstrate that TarDiff not only preserves temporal fidelity but also enhances downstream model performance, offering a robust solution to data scarcity and class imbalance in healthcare analytics.
Abstract:Pre-trained transformer large language models (LLMs) demonstrate strong knowledge recall capabilities. This paper investigates the knowledge recall mechanism in LLMs by abstracting it into a functional structure. We propose that during knowledge recall, the model's hidden activation space implicitly entails a function execution process where specific activation vectors align with functional components (Input argument, Function body, and Return values). Specifically, activation vectors of relation-related tokens define a mapping function from subjects to objects, with subject-related token activations serving as input arguments and object-related token activations as return values. For experimental verification, we first design a patching-based knowledge-scoring algorithm to identify knowledge-aware activation vectors as independent functional components. Then, we conduct counter-knowledge testing to examine the independent functional effects of each component on knowledge recall outcomes. From this functional perspective, we improve the contextual knowledge editing approach augmented by activation patching. By rewriting incoherent activations in context, we enable improved short-term memory retention for new knowledge prompting.
Abstract:Model calibration seeks to ensure that models produce confidence scores that accurately reflect the true likelihood of their predictions being correct. However, existing calibration approaches are fundamentally tied to datasets of one-hot labels implicitly assuming full certainty in all the annotations. Such datasets are effective for classification but provides insufficient knowledge of uncertainty for model calibration, necessitating the curation of datasets with numerically rich ground-truth confidence values. However, due to the scarcity of uncertain visual examples, such samples are not easily available as real datasets. In this paper, we introduce calibration-aware data augmentation to create synthetic datasets of diverse samples and their ground-truth uncertainty. Specifically, we present Calibration-aware Semantic Mixing (CSM), a novel framework that generates training samples with mixed class characteristics and annotates them with distinct confidence scores via diffusion models. Based on this framework, we propose calibrated reannotation to tackle the misalignment between the annotated confidence score and the mixing ratio during the diffusion reverse process. Besides, we explore the loss functions that better fit the new data representation paradigm. Experimental results demonstrate that CSM achieves superior calibration compared to the state-of-the-art calibration approaches. Code is available at github.com/E-Galois/CSM.
Abstract:Pre-trained large language models (LLMs) have been demonstrated to possess intrinsic reasoning capabilities that can emerge naturally when expanding the response space. However, the neural representation mechanisms underlying these intrinsic capabilities and approaches for their optimal utilization remain inadequately understood. In this work, we make the key discovery that a simple linear classifier can effectively detect intrinsic reasoning capabilities in LLMs' activation space, particularly within specific representation types and network layers. Based on this finding, we propose a classifier-guided search framework that strategically explore a tree-structured response space. In each node expansion, the classifier serves as a scoring and ranking mechanism that efficiently allocates computational resources by identifying and prioritizing more thoughtful reasoning directions for continuation. After completing the tree expansion, we collect answers from all branches to form a candidate answer pool. We propose a branch-aggregation selection method that marginalizes over all supporting branches by aggregating their thoughtfulness scores, thereby identifying the optimal answer from the pool. Experimental results show that our framework's comprehensive exploration not only covers valid reasoning chains but also effectively identifies them, achieving significant improvements across multiple arithmetic reasoning benchmarks.
Abstract:Marine Saliency Segmentation (MSS) plays a pivotal role in various vision-based marine exploration tasks. However, existing marine segmentation techniques face the dilemma of object mislocalization and imprecise boundaries due to the complex underwater environment. Meanwhile, despite the impressive performance of diffusion models in visual segmentation, there remains potential to further leverage contextual semantics to enhance feature learning of region-level salient objects, thereby improving segmentation outcomes. Building on this insight, we propose DiffMSS, a novel marine saliency segmenter based on the diffusion model, which utilizes semantic knowledge distillation to guide the segmentation of marine salient objects. Specifically, we design a region-word similarity matching mechanism to identify salient terms at the word level from the text descriptions. These high-level semantic features guide the conditional feature learning network in generating salient and accurate diffusion conditions with semantic knowledge distillation. To further refine the segmentation of fine-grained structures in unique marine organisms, we develop the dedicated consensus deterministic sampling to suppress overconfident missegmentations. Comprehensive experiments demonstrate the superior performance of DiffMSS over state-of-the-art methods in both quantitative and qualitative evaluations.
Abstract:We introduce Lumina-Image 2.0, an advanced text-to-image generation framework that achieves significant progress compared to previous work, Lumina-Next. Lumina-Image 2.0 is built upon two key principles: (1) Unification - it adopts a unified architecture (Unified Next-DiT) that treats text and image tokens as a joint sequence, enabling natural cross-modal interactions and allowing seamless task expansion. Besides, since high-quality captioners can provide semantically well-aligned text-image training pairs, we introduce a unified captioning system, Unified Captioner (UniCap), specifically designed for T2I generation tasks. UniCap excels at generating comprehensive and accurate captions, accelerating convergence and enhancing prompt adherence. (2) Efficiency - to improve the efficiency of our proposed model, we develop multi-stage progressive training strategies and introduce inference acceleration techniques without compromising image quality. Extensive evaluations on academic benchmarks and public text-to-image arenas show that Lumina-Image 2.0 delivers strong performances even with only 2.6B parameters, highlighting its scalability and design efficiency. We have released our training details, code, and models at https://github.com/Alpha-VLLM/Lumina-Image-2.0.
Abstract:Vision language models (VLMs) have excelled in visual reasoning but often incur high computational costs. One key reason is the redundancy of visual tokens. Although recent token reduction methods claim to achieve minimal performance loss, our extensive experiments reveal that token reduction can substantially alter a model's output distribution, leading to changes in prediction patterns that standard metrics such as accuracy loss do not fully capture. Such inconsistencies are especially concerning for practical applications where system stability is critical. To investigate this phenomenon, we analyze how token reduction influences the energy distribution of a VLM's internal representations using a lower-rank approximation via Singular Value Decomposition (SVD). Our results show that changes in the Inverse Participation Ratio of the singular value spectrum are strongly correlated with the model's consistency after token reduction. Based on these insights, we propose LoFi--a training-free visual token reduction method that utilizes the leverage score from SVD for token pruning. Experimental evaluations demonstrate that LoFi not only reduces computational costs with minimal performance degradation but also significantly outperforms state-of-the-art methods in terms of output consistency.
Abstract:Time-series Generation (TSG) is a prominent research area with broad applications in simulations, data augmentation, and counterfactual analysis. While existing methods have shown promise in unconditional single-domain TSG, real-world applications demand for cross-domain approaches capable of controlled generation tailored to domain-specific constraints and instance-level requirements. In this paper, we argue that text can provide semantic insights, domain information and instance-specific temporal patterns, to guide and improve TSG. We introduce ``Text-Controlled TSG'', a task focused on generating realistic time series by incorporating textual descriptions. To address data scarcity in this setting, we propose a novel LLM-based Multi-Agent framework that synthesizes diverse, realistic text-to-TS datasets. Furthermore, we introduce BRIDGE, a hybrid text-controlled TSG framework that integrates semantic prototypes with text description for supporting domain-level guidance. This approach achieves state-of-the-art generation fidelity on 11 of 12 datasets, and improves controllability by 12.52% on MSE and 6.34% MAE compared to no text input generation, highlighting its potential for generating tailored time-series data.
Abstract:Soft robotic grippers gently and safely manipulate delicate objects due to their inherent adaptability and softness. Limited by insufficient stiffness and imprecise force control, conventional soft grippers are not suitable for applications that require stable grasping force. In this work, we propose a soft gripper that utilizes an origami-inspired structure to achieve tunable constant force output over a wide strain range. The geometry of each taper panel is established to provide necessary parameters such as protrusion distance, taper angle, and crease thickness required for 3D modeling and FEA analysis. Simulations and experiments show that by optimizing these parameters, our design can achieve a tunable constant force output. Moreover, the origami-inspired soft gripper dynamically adapts to different shapes while preventing excessive forces, with potential applications in logistics, manufacturing, and other industrial settings that require stable and adaptive operations
Abstract:Masked autoencoders (MAEs) represent a prominent self-supervised learning paradigm in computer vision. Despite their empirical success, the underlying mechanisms of MAEs remain insufficiently understood. Recent studies have attempted to elucidate the functioning of MAEs through contrastive learning and feature representation analysis, yet these approaches often provide only implicit insights. In this paper, we propose a new perspective for understanding MAEs by leveraging the information bottleneck principle in information theory. Our theoretical analyses reveal that optimizing the latent features to balance relevant and irrelevant information is key to improving MAE performance. Building upon our proofs, we introduce MI-MAE, a novel method that optimizes MAEs through mutual information maximization and minimization. By enhancing latent features to retain maximal relevant information between them and the output, and minimizing irrelevant information between them and the input, our approach achieves better performance. Extensive experiments on standard benchmarks show that MI-MAE significantly outperforms MAE models in tasks such as image classification, object detection, and semantic segmentation. Our findings validate the theoretical framework and highlight the practical advantages of applying the information bottleneck principle to MAEs, offering deeper insights for developing more powerful self-supervised learning models.