Abstract:Retrieval-Augmented Generation (RAG) is an effective method to enhance the capabilities of large language models (LLMs). Existing methods focus on optimizing the retriever or generator in the RAG system by directly utilizing the top-k retrieved documents. However, the documents effectiveness are various significantly across user queries, i.e. some documents provide valuable knowledge while others totally lack critical information. It hinders the retriever and generator's adaptation during training. Inspired by human cognitive learning, curriculum learning trains models using samples progressing from easy to difficult, thus enhancing their generalization ability, and we integrate this effective paradigm to the training of the RAG system. In this paper, we propose a multi-stage Curriculum Learning based RAG system training framework, named CL-RAG. We first construct training data with multiple difficulty levels for the retriever and generator separately through sample evolution. Then, we train the model in stages based on the curriculum learning approach, thereby optimizing the overall performance and generalization of the RAG system more effectively. Our CL-RAG framework demonstrates consistent effectiveness across four open-domain QA datasets, achieving performance gains of 2% to 4% over multiple advanced methods.
Abstract:Large Language Models (LLMs) have seen rapid advancements in recent years, with models like ChatGPT and DeepSeek, showcasing their remarkable capabilities across diverse domains. While substantial research has been conducted on LLMs in various fields, a comprehensive review focusing on their integration with Computer-Aided Design (CAD) remains notably absent. CAD is the industry standard for 3D modeling and plays a vital role in the design and development of products across different industries. As the complexity of modern designs increases, the potential for LLMs to enhance and streamline CAD workflows presents an exciting frontier. This article presents the first systematic survey exploring the intersection of LLMs and CAD. We begin by outlining the industrial significance of CAD, highlighting the need for AI-driven innovation. Next, we provide a detailed overview of the foundation of LLMs. We also examine both closed-source LLMs as well as publicly available models. The core of this review focuses on the various applications of LLMs in CAD, providing a taxonomy of six key areas where these models are making considerable impact. Finally, we propose several promising future directions for further advancements, which offer vast opportunities for innovation and are poised to shape the future of CAD technology. Github: https://github.com/lichengzhanguom/LLMs-CAD-Survey-Taxonomy
Abstract:In-context learning (ICL), which promotes inference with several demonstrations, has become a widespread paradigm to stimulate LLM capabilities for downstream tasks. Due to context length constraints, it cannot be further improved in spite of more training data, and general features directly from LLMs in ICL are not adaptive to the specific downstream task. In this paper, we propose a feature-adaptive and data-scalable in-context learning framework (FADS-ICL), which can leverage task-adaptive features to promote inference on the downstream task, with the supervision of beyond-context samples. Specifically, it first extracts general features of beyond-context samples via the LLM with ICL input form one by one, and introduces a task-specific modulator to perform feature refinement and prediction after fitting a specific downstream task. We conduct extensive experiments on FADS-ICL under varying data settings (4$\sim$128 shots) and LLM scale (0.8$\sim$70B) settings. Experimental results show that FADS-ICL consistently outperforms previous state-of-the-art methods by a significant margin under all settings, verifying the effectiveness and superiority of FADS-ICL. For example, under the 1.5B and 32 shots setting, FADS-ICL can achieve \textbf{+14.3} average accuracy from feature adaptation over vanilla ICL on 10 datasets, with \textbf{+6.2} average accuracy over the previous state-of-the-art method, and the performance can further improve with increasing training data. Code and data are publicly available at \url{https://github.com/jiahaozhenbang/FADS-ICL}.
Abstract:Representation Learning on Knowledge Graphs (KGs) is essential for downstream tasks. The dominant approach, KG Embedding (KGE), represents entities with independent vectors and faces the scalability challenge. Recent studies propose an alternative way for parameter efficiency, which represents entities by composing entity-corresponding codewords matched from predefined small-scale codebooks. We refer to the process of obtaining corresponding codewords of each entity as entity quantization, for which previous works have designed complicated strategies. Surprisingly, this paper shows that simple random entity quantization can achieve similar results to current strategies. We analyze this phenomenon and reveal that entity codes, the quantization outcomes for expressing entities, have higher entropy at the code level and Jaccard distance at the codeword level under random entity quantization. Therefore, different entities become more easily distinguished, facilitating effective KG representation. The above results show that current quantization strategies are not critical for KG representation, and there is still room for improvement in entity distinguishability beyond current strategies. The code to reproduce our results is available at https://github.com/JiaangL/RandomQuantization.
Abstract:In recent years, the rapid rise of video applications has led to an explosion of Internet video traffic, thereby posing severe challenges to network management. Therefore, effectively identifying and managing video traffic has become an urgent problem to be solved. However, the existing video traffic feature extraction methods mainly target at the traditional packet and flow level features, and the video traffic identification accuracy is low. Additionally, the issue of high data dimension often exists in video traffic identification, requiring an effective approach to select the most relevant features to complete the identification task. Although numerous studies have used feature selection to achieve improved identification performance, no feature selection research has focused on measuring feature distributions that do not overlap or have a small overlap. First, this study proposes to extract video-related features to construct a large-scale feature set to identify video traffic. Second, to reduce the cost of video traffic identification and select an effective feature subset, the current research proposes an adaptive distribution distance-based feature selection (ADDFS) method, which uses Wasserstein distance to measure the distance between feature distributions. To test the effectiveness of the proposal, we collected a set of video traffic from different platforms in a campus network environment and conducted a set of experiments using these data sets. Experimental results suggest that the proposed method can achieve high identification performance for video scene traffic and cloud game video traffic identification. Lastly, a comparison of ADDFS with other feature selection methods shows that ADDFS is a practical feature selection technique not only for video traffic identification, but also for general classification tasks.
Abstract:Over the year, people have been using deep learning to tackle inversion problems, and we see the framework has been applied to build relationship between recording wavefield and velocity (Yang et al., 2016). Here we will extend the work from 2 perspectives, one is deriving a more appropriate loss function, as we now, pixel-2-pixel comparison might not be the best choice to characterize image structure, and we will elaborate on how to construct cost function to capture high level feature to enhance the model performance. Another dimension is searching for the more appropriate neural architecture, which is a subset of an even bigger picture, the automatic machine learning, or AutoML. There are several famous networks, U-net, ResNet (He et al., 2016) and DenseNet (Huang et al., 2017), and they achieve phenomenal results for certain problems, yet it's hard to argue they are the best for inversion problems without thoroughly searching within certain space. Here we will be showing our architecture search results for inversion.
Abstract:Deep Learning is gaining traction with geophysics community to understand subsurface structures, such as fault detection or salt body in seismic data. This study describes using deep learning method for iceberg or ship recognition with synthetic aperture radar (SAR) data. Drifting icebergs pose a potential threat to activities offshore around the Arctic, including for both ship navigation and oil rigs. Advancement of satellite imagery using weather-independent cross-polarized radar has enabled us to monitor and delineate icebergs and ships, however a human component is needed to classify the images. Here we present Transfer Learning, a convolutional neural network (CNN) designed to work with a limited training data and features, while demonstrating its effectiveness in this problem. Key aspect of the approach is data augmentation and stacking of multiple outputs, resulted in a significant boost in accuracy (logarithmic score of 0.1463). This algorithm has been tested through participation at the Statoil/C-Core Kaggle competition.
Abstract:Large-scale datasets have played a significant role in progress of neural network and deep learning areas. YouTube-8M is such a benchmark dataset for general multi-label video classification. It was created from over 7 million YouTube videos (450,000 hours of video) and includes video labels from a vocabulary of 4716 classes (3.4 labels/video on average). It also comes with pre-extracted audio & visual features from every second of video (3.2 billion feature vectors in total). Google cloud recently released the datasets and organized 'Google Cloud & YouTube-8M Video Understanding Challenge' on Kaggle. Competitors are challenged to develop classification algorithms that assign video-level labels using the new and improved Youtube-8M V2 dataset. Inspired by the competition, we started exploration of audio understanding and classification using deep learning algorithms and ensemble methods. We built several baseline predictions according to the benchmark paper and public github tensorflow code. Furthermore, we improved global prediction accuracy (GAP) from base level 77% to 80.7% through approaches of ensemble.