Abstract:Large Language Models (LLMs) have achieved remarkable performance across various reasoning tasks, yet post-training is constrained by inefficient sample utilization and inflexible difficulty samples processing. To address these limitations, we propose Customized Curriculum Learning (CCL), a novel framework with two key innovations. First, we introduce model-adaptive difficulty definition that customizes curriculum datasets based on each model's individual capabilities rather than using predefined difficulty metrics. Second, we develop "Guided Prompting," which dynamically reduces sample difficulty through strategic hints, enabling effective utilization of challenging samples that would otherwise degrade performance. Comprehensive experiments on supervised fine-tuning and reinforcement learning demonstrate that CCL significantly outperforms uniform training approaches across five mathematical reasoning benchmarks, confirming its effectiveness across both paradigms in enhancing sample utilization and model performance.
Abstract:Large language models (LLMs) are increasingly expected to tackle complex tasks, driven by their expanding applications and users' growing proficiency in crafting sophisticated prompts. However, as the number of explicitly stated requirements increases (particularly more than 10 constraints), LLMs often struggle to accurately follow such complex instructions. To address this challenge, we propose RECAST, a novel framework for synthesizing datasets where each example incorporates far more constraints than those in existing benchmarks. These constraints are extracted from real-world prompt-response pairs to ensure practical relevance. RECAST enables automatic verification of constraint satisfaction via rule-based validators for quantitative constraints and LLM-based validators for qualitative ones. Using this framework, we construct RECAST-30K, a large-scale, high-quality dataset comprising 30k instances spanning 15 constraint types. Experimental results demonstrate that models fine-tuned on RECAST-30K show substantial improvements in following complex instructions. Moreover, the verifiability provided by RECAST enables the design of reward functions for reinforcement learning, which further boosts model performance on complex and challenging tasks.
Abstract:The capacity of large language models (LLMs) to generate honest, harmless, and helpful responses heavily relies on the quality of user prompts. However, these prompts often tend to be brief and vague, thereby significantly limiting the full potential of LLMs. Moreover, harmful prompts can be meticulously crafted and manipulated by adversaries to jailbreak LLMs, inducing them to produce potentially toxic content. To enhance the capabilities of LLMs while maintaining strong robustness against harmful jailbreak inputs, this study proposes a transferable and pluggable framework that refines user prompts before they are input into LLMs. This strategy improves the quality of the queries, empowering LLMs to generate more truthful, benign and useful responses. Specifically, a lightweight query refinement model is introduced and trained using a specially designed reinforcement learning approach that incorporates multiple objectives to enhance particular capabilities of LLMs. Extensive experiments demonstrate that the refinement model not only improves the quality of responses but also strengthens their robustness against jailbreak attacks. Code is available at: https://github.com/Huangzisu/query-refinement .