The answering quality of an aligned large language model (LLM) can be drastically improved if treated with proper crafting of prompts. In this paper, we propose ExpertPrompting to elicit the potential of LLMs to answer as distinguished experts. We first utilize In-Context Learning to automatically synthesize detailed and customized descriptions of the expert identity for each specific instruction, and then ask LLMs to provide answer conditioned on such agent background. Based on this augmented prompting strategy, we produce a new set of instruction-following data using GPT-3.5, and train a competitive open-source chat assistant called ExpertLLaMA. We employ GPT4-based evaluation to show that 1) the expert data is of significantly higher quality than vanilla answers, and 2) ExpertLLaMA outperforms existing open-source opponents and achieves 96\% of the original ChatGPT's capability. All data and the ExpertLLaMA model will be made publicly available at \url{https://github.com/OFA-Sys/ExpertLLaMA}.
In-Context Learning (ICL), which formulates target tasks as prompt completion conditioned on in-context demonstrations, has become the prevailing utilization of LLMs. In this paper, we first disclose an actual predicament for this typical usage that it can not scale up with training data due to context length restriction. Besides, existing works have shown that ICL also suffers from various biases and requires delicate calibration treatment. To address both challenges, we advocate a simple and effective solution, $k$NN Prompting, which first queries LLM with training data for distributed representations, then predicts test instances by simply referring to nearest neighbors. We conduct comprehensive experiments to demonstrate its two-fold superiority: 1) Calibration-Free: $k$NN Prompting does not directly align LLM output distribution with task-specific label space, instead leverages such distribution to align test and training instances. It significantly outperforms state-of-the-art calibration-based methods under comparable few-shot scenario. 2) Beyond-Context: $k$NN Prompting can further scale up effectively with as many training data as are available, continually bringing substantial improvements. The scaling trend holds across 10 orders of magnitude ranging from 2 shots to 1024 shots as well as different LLMs scales ranging from 0.8B to 30B. It successfully bridges data scaling into model scaling, and brings new potentials for the gradient-free paradigm of LLM deployment. Code is publicly available.
Relational triple extraction is challenging for its difficulty in capturing rich correlations between entities and relations. Existing works suffer from 1) heterogeneous representations of entities and relations, and 2) heterogeneous modeling of entity-entity interactions and entity-relation interactions. Therefore, the rich correlations are not fully exploited by existing works. In this paper, we propose UniRel to address these challenges. Specifically, we unify the representations of entities and relations by jointly encoding them within a concatenated natural language sequence, and unify the modeling of interactions with a proposed Interaction Map, which is built upon the off-the-shelf self-attention mechanism within any Transformer block. With comprehensive experiments on two popular relational triple extraction datasets, we demonstrate that UniRel is more effective and computationally efficient. The source code is available at https://github.com/wtangdev/UniRel.
Pre-trained language models (PLMs), such as BERT and GPT, have revolutionized the field of NLP, not only in the general domain but also in the biomedical domain. Most prior efforts in building biomedical PLMs have resorted simply to domain adaptation and focused mainly on English. In this work we introduce eHealth, a biomedical PLM in Chinese built with a new pre-training framework. This new framework trains eHealth as a discriminator through both token-level and sequence-level discrimination. The former is to detect input tokens corrupted by a generator and select their original signals from plausible candidates, while the latter is to further distinguish corruptions of a same original sequence from those of the others. As such, eHealth can learn language semantics at both the token and sequence levels. Extensive experiments on 11 Chinese biomedical language understanding tasks of various forms verify the effectiveness and superiority of our approach. The pre-trained model is available to the public at \url{https://github.com/PaddlePaddle/Research/tree/master/KG/eHealth} and the code will also be released later.
Entities, as the essential elements in relation extraction tasks, exhibit certain structure. In this work, we formulate such structure as distinctive dependencies between mention pairs. We then propose SSAN, which incorporates these structural dependencies within the standard self-attention mechanism and throughout the overall encoding stage. Specifically, we design two alternative transformation modules inside each self-attention building block to produce attentive biases so as to adaptively regularize its attention flow. Our experiments demonstrate the usefulness of the proposed entity structure and the effectiveness of SSAN. It significantly outperforms competitive baselines, achieving new state-of-the-art results on three popular document-level relation extraction datasets. We further provide ablation and visualization to show how the entity structure guides the model for better relation extraction. Our code is publicly available.