Abstract:Large language models (LLMs) are increasingly used in academic writing workflows, yet they frequently hallucinate by generating citations to sources that do not exist. This study analyzes 100 AI-generated hallucinated citations that appeared in papers accepted by the 2025 Conference on Neural Information Processing Systems (NeurIPS), one of the world's most prestigious AI conferences. Despite review by 3-5 expert researchers per paper, these fabricated citations evaded detection, appearing in 53 published papers (approx. 1% of all accepted papers). We develop a five-category taxonomy that classifies hallucinations by their failure mode: Total Fabrication (66%), Partial Attribute Corruption (27%), Identifier Hijacking (4%), Placeholder Hallucination (2%), and Semantic Hallucination (1%). Our analysis reveals a critical finding: every hallucination (100%) exhibited compound failure modes. The distribution of secondary characteristics was dominated by Semantic Hallucination (63%) and Identifier Hijacking (29%), which often appeared alongside Total Fabrication to create a veneer of plausibility and false verifiability. These compound structures exploit multiple verification heuristics simultaneously, explaining why peer review fails to detect them. The distribution exhibits a bimodal pattern: 92% of contaminated papers contain 1-2 hallucinations (minimal AI use) while 8% contain 4-13 hallucinations (heavy reliance). These findings demonstrate that current peer review processes do not include effective citation verification and that the problem extends beyond NeurIPS to other major conferences, government reports, and professional consulting. We propose mandatory automated citation verification at submission as an implementable solution to prevent fabricated citations from becoming normalized in scientific literature.