



Abstract:Visual Emotion Analysis (VEA) aims to bridge the affective gap between visual content and human emotional responses. Despite its promise, progress in this field remains limited by the lack of open-source and interpretable datasets. Most existing studies assign a single discrete emotion label to an entire image, offering limited insight into how visual elements contribute to emotion. In this work, we introduce EmoVerse, a large-scale open-source dataset that enables interpretable visual emotion analysis through multi-layered, knowledge-graph-inspired annotations. By decomposing emotions into Background-Attribute-Subject (B-A-S) triplets and grounding each element to visual regions, EmoVerse provides word-level and subject-level emotional reasoning. With over 219k images, the dataset further includes dual annotations in Categorical Emotion States (CES) and Dimensional Emotion Space (DES), facilitating unified discrete and continuous emotion representation. A novel multi-stage pipeline ensures high annotation reliability with minimal human effort. Finally, we introduce an interpretable model that maps visual cues into DES representations and provides detailed attribution explanations. Together, the dataset, pipeline, and model form a comprehensive foundation for advancing explainable high-level emotion understanding.




Abstract:Text-driven multi-object image editing which aims to precisely modify multiple objects within an image based on text descriptions, has recently attracted considerable interest. Existing works primarily follow the localize-editing paradigm, focusing on independent object localization and editing while neglecting critical inter-object interactions. However, this work points out that the neglected attention entanglements in inter-object conflict regions, inherently hinder disentangled multi-object editing, leading to either inter-object editing leakage or intra-object editing constraints. We thereby propose a novel multi-layer disentangled editing framework LayerEdit, a training-free method which, for the first time, through precise object-layered decomposition and coherent fusion, enables conflict-free object-layered editing. Specifically, LayerEdit introduces a novel "decompose-editingfusion" framework, consisting of: (1) Conflict-aware Layer Decomposition module, which utilizes an attention-aware IoU scheme and time-dependent region removing, to enhance conflict awareness and suppression for layer decomposition. (2) Object-layered Editing module, to establish coordinated intra-layer text guidance and cross-layer geometric mapping, achieving disentangled semantic and structural modifications. (3) Transparency-guided Layer Fusion module, to facilitate structure-coherent inter-object layer fusion through precise transparency guidance learning. Extensive experiments verify the superiority of LayerEdit over existing methods, showing unprecedented intra-object controllability and inter-object coherence in complex multi-object scenarios. Codes are available at: https://github.com/fufy1024/LayerEdit.




Abstract:Reward models (RMs) are a core component in the post-training of large language models (LLMs), serving as proxies for human preference evaluation and guiding model alignment. However, training reliable RMs under limited resources remains challenging due to the reliance on large-scale preference annotations and the high cost of fine-tuning LLMs. To address this, we propose SparseRM, which leverages Sparse Autoencoder (SAE) to extract preference-relevant information encoded in model representations, enabling the construction of a lightweight and interpretable reward model. SparseRM first employs SAE to decompose LLM representations into interpretable directions that capture preference-relevant features. The representations are then projected onto these directions to compute alignment scores, which quantify the strength of each preference feature in the representations. A simple reward head aggregates these scores to predict preference scores. Experiments on three preference modeling tasks show that SparseRM achieves superior performance over most mainstream RMs while using less than 1% of trainable parameters. Moreover, it integrates seamlessly into downstream alignment pipelines, highlighting its potential for efficient alignment.




Abstract:Large video language models (LVLMs) have made notable progress in video understanding, spurring the development of corresponding evaluation benchmarks. However, existing benchmarks generally assess overall performance across entire video sequences, overlooking nuanced behaviors such as contextual positional bias, a critical yet under-explored aspect of LVLM performance. We present Video-LevelGauge, a dedicated benchmark designed to systematically assess positional bias in LVLMs. We employ standardized probes and customized contextual setups, allowing flexible control over context length, probe position, and contextual types to simulate diverse real-world scenarios. In addition, we introduce a comprehensive analysis method that combines statistical measures with morphological pattern recognition to characterize bias. Our benchmark comprises 438 manually curated videos spanning multiple types, yielding 1,177 high-quality multiple-choice questions and 120 open-ended questions, validated for their effectiveness in exposing positional bias. Based on these, we evaluate 27 state-of-the-art LVLMs, including both commercial and open-source models. Our findings reveal significant positional biases in many leading open-source models, typically exhibiting head or neighbor-content preferences. In contrast, commercial models such as Gemini2.5-Pro show impressive, consistent performance across entire video sequences. Further analyses on context length, context variation, and model scale provide actionable insights for mitigating bias and guiding model enhancement.https://github.com/Cola-any/Video-LevelGauge
Abstract:Animation colorization is a crucial part of real animation industry production. Long animation colorization has high labor costs. Therefore, automated long animation colorization based on the video generation model has significant research value. Existing studies are limited to short-term colorization. These studies adopt a local paradigm, fusing overlapping features to achieve smooth transitions between local segments. However, the local paradigm neglects global information, failing to maintain long-term color consistency. In this study, we argue that ideal long-term color consistency can be achieved through a dynamic global-local paradigm, i.e., dynamically extracting global color-consistent features relevant to the current generation. Specifically, we propose LongAnimation, a novel framework, which mainly includes a SketchDiT, a Dynamic Global-Local Memory (DGLM), and a Color Consistency Reward. The SketchDiT captures hybrid reference features to support the DGLM module. The DGLM module employs a long video understanding model to dynamically compress global historical features and adaptively fuse them with the current generation features. To refine the color consistency, we introduce a Color Consistency Reward. During inference, we propose a color consistency fusion to smooth the video segment transition. Extensive experiments on both short-term (14 frames) and long-term (average 500 frames) animations show the effectiveness of LongAnimation in maintaining short-term and long-term color consistency for open-domain animation colorization task. The code can be found at https://cn-makers.github.io/long_animation_web/.
Abstract:Deep Research Agents are a prominent category of LLM-based agents. By autonomously orchestrating multistep web exploration, targeted retrieval, and higher-order synthesis, they transform vast amounts of online information into analyst-grade, citation-rich reports--compressing hours of manual desk research into minutes. However, a comprehensive benchmark for systematically evaluating the capabilities of these agents remains absent. To bridge this gap, we present DeepResearch Bench, a benchmark consisting of 100 PhD-level research tasks, each meticulously crafted by domain experts across 22 distinct fields. Evaluating DRAs is inherently complex and labor-intensive. We therefore propose two novel methodologies that achieve strong alignment with human judgment. The first is a reference-based method with adaptive criteria to assess the quality of generated research reports. The other framework is introduced to evaluate DRA's information retrieval and collection capabilities by assessing its effective citation count and overall citation accuracy. We have open-sourced DeepResearch Bench and key components of these frameworks at https://github.com/Ayanami0730/deep_research_bench to accelerate the development of practical LLM-based agents.




Abstract:The pursuit of diverse, complex, and large-scale instruction data is crucial for automatically aligning large language models (LLMs). While there are methods capable of generating synthetic instructions at scale, they either suffer from limited grounding sources, leading to a narrow distribution, or rely on trivial extensions that fail to produce meaningful trajectories in terms of complexity. In contrast, instructions that benefit efficient alignment are typically crafted with cognitive insights and grounded in real-world use cases. In this paper, we synthesize such instructions using attributed grounding, which involves 1) a top-down attribution process that grounds a selective set of real instructions to situated users, and 2) a bottom-up synthesis process that leverages web documents to first generate a situation, then a meaningful instruction. This framework allows us to harvest diverse and complex instructions at scale, utilizing the vast range of web documents. Specifically, we construct a dataset of 1 million instructions, called SynthQuestions, and demonstrate that models trained on it achieve leading performance on several common benchmarks, with improvements that continually scale with more web corpora. Data, models and codes will be available at https://github.com/Ignoramus0817/SynthQuestions.




Abstract:Training language models with rationales augmentation has been shown to be beneficial in many existing works. In this paper, we identify that such a prevailing view does not hold consistently. We conduct comprehensive investigations to thoroughly inspect the impact of rationales on model performance as well as a novel perspective of model reliability. The results lead to several key findings that add new insights upon existing understandings: 1) Rationales can, at times, deteriorate model performance; 2) Rationales can, at times, improve model reliability, even outperforming their untrained counterparts; 3) A linear correspondence exists in between the performance and reliability improvements, while both are driven by the intrinsic difficulty of the task. These findings provide informative regulations on the broad utilization of rationales and raise critical implications on the procedure of explicitly aligning language models with implicit human thoughts. Codes can be found at https://github.com/Ignoramus0817/rationales.
Abstract:Complex tasks involving tool integration pose significant challenges for Large Language Models (LLMs), leading to the emergence of multi-agent workflows as a promising solution. Reflection has emerged as an effective strategy for correcting erroneous trajectories in agentic workflows. However, existing approaches only exploit such capability in the post-action stage, where the agent observes the execution outcomes. We argue that, like humans, LLMs can also engage in reflection before action execution: the agent can anticipate undesirable outcomes from its own decisions, which not only provides a necessarily complementary perspective to evaluate the decision but also prevents the propagation of errors throughout the trajectory. In this paper, we propose MIRROR, a framework that consists of both intra-reflection, which critically assesses intended actions before execution, and inter-reflection, which further adjusts the trajectory based on observations. This design systematically leverages LLM reflection capabilities to eliminate and rectify erroneous actions on a more comprehensive scope. Evaluations on both the StableToolBench and TravelPlanner benchmarks demonstrate MIRROR's superior performance, achieving state-of-the-art results compared to existing approaches.




Abstract:The widespread adoption of large language models (LLMs) across industries has increased the demand for high-quality and customizable outputs. However, traditional alignment methods often require retraining large pretrained models, making it difficult to quickly adapt and optimize LLMs for diverse applications. To address this limitation, we propose a novel \textit{Residual Alignment Model} (\textit{RAM}) that formalizes the alignment process as a type of importance sampling. In this framework, the unaligned upstream model serves as the proposal distribution, while the alignment process is framed as secondary sampling based on an autoregressive alignment module that acts as an estimator of the importance weights. This design enables a natural detachment of the alignment module from the target aligned model, improving flexibility and scalability. Based on this model, we derive an efficient sequence-level training strategy for the alignment module, which operates independently of the proposal module. Additionally, we develop a resampling algorithm with iterative token-level decoding to address the common first-token latency issue in comparable methods. Experimental evaluations on two leading open-source LLMs across diverse tasks, including instruction following, domain adaptation, and preference optimization, demonstrate that our approach consistently outperforms baseline models.