Abstract:The pursuit of diverse, complex, and large-scale instruction data is crucial for automatically aligning large language models (LLMs). While there are methods capable of generating synthetic instructions at scale, they either suffer from limited grounding sources, leading to a narrow distribution, or rely on trivial extensions that fail to produce meaningful trajectories in terms of complexity. In contrast, instructions that benefit efficient alignment are typically crafted with cognitive insights and grounded in real-world use cases. In this paper, we synthesize such instructions using attributed grounding, which involves 1) a top-down attribution process that grounds a selective set of real instructions to situated users, and 2) a bottom-up synthesis process that leverages web documents to first generate a situation, then a meaningful instruction. This framework allows us to harvest diverse and complex instructions at scale, utilizing the vast range of web documents. Specifically, we construct a dataset of 1 million instructions, called SynthQuestions, and demonstrate that models trained on it achieve leading performance on several common benchmarks, with improvements that continually scale with more web corpora. Data, models and codes will be available at https://github.com/Ignoramus0817/SynthQuestions.
Abstract:Training language models with rationales augmentation has been shown to be beneficial in many existing works. In this paper, we identify that such a prevailing view does not hold consistently. We conduct comprehensive investigations to thoroughly inspect the impact of rationales on model performance as well as a novel perspective of model reliability. The results lead to several key findings that add new insights upon existing understandings: 1) Rationales can, at times, deteriorate model performance; 2) Rationales can, at times, improve model reliability, even outperforming their untrained counterparts; 3) A linear correspondence exists in between the performance and reliability improvements, while both are driven by the intrinsic difficulty of the task. These findings provide informative regulations on the broad utilization of rationales and raise critical implications on the procedure of explicitly aligning language models with implicit human thoughts. Codes can be found at https://github.com/Ignoramus0817/rationales.
Abstract:Creative writing is a key capability of Large Language Models (LLMs), with potential applications in literature, storytelling, and various creative domains. However, evaluating the creativity of machine-generated texts remains a significant challenge, as existing methods either rely on costly manual annotations or fail to align closely with human assessments. In this paper, we propose an effective automated evaluation method based on the Torrance Test of Creative Writing (TTCW), which evaluates creativity as product. Our method employs a reference-based Likert-style approach, scoring generated creative texts relative to high-quality reference texts across various tests. Experimental results demonstrate that our method significantly improves the alignment between LLM evaluations and human assessments, achieving a pairwise accuracy of 0.75 (+15\%).
Abstract:The task of Grammatical Error Correction (GEC) aims to automatically correct grammatical errors in natural texts. Almost all previous works treat annotated training data equally, but inherent discrepancies in data are neglected. In this paper, the inherent discrepancies are manifested in two aspects, namely, accuracy of data annotation and diversity of potential annotations. To this end, we propose MainGEC, which designs token-level and sentence-level training weights based on inherent discrepancies in accuracy and potential diversity of data annotation, respectively, and then conducts mixed-grained weighted training to improve the training effect for GEC. Empirical evaluation shows that whether in the Seq2Seq or Seq2Edit manner, MainGEC achieves consistent and significant performance improvements on two benchmark datasets, demonstrating the effectiveness and superiority of the mixed-grained weighted training. Further ablation experiments verify the effectiveness of designed weights of both granularities in MainGEC.
Abstract:As large language models attract increasing attention and find widespread application, concurrent challenges of reliability also arise at the same time. Confidence calibration, an effective analysis method for gauging the reliability of deep models, serves as a crucial tool for assessing and improving their reliability. However, such investigation has been comparatively underexplored. In this work, we conduct a systematic examination of the calibration of aligned language models throughout the entire construction process, including pretraining and alignment training. At each stage, we investigate how different training settings, such as parameter scales and training data, affect model calibration. To thoroughly assess model calibration, we evaluate models on three most concerned aspects: generation, factuality and understanding. Our work sheds light on whether popular LLMs are well-calibrated and how the training process influences model calibration.