Abstract:Recent advances in large language models (LLMs) and audio language models have significantly improved music generation, particularly in lyrics-to-song generation. However, existing approaches still struggle with the complex composition of songs and the scarcity of high-quality data, leading to limitations in sound quality, musicality, instruction following, and vocal-instrument harmony. To address these challenges, we introduce LeVo, an LM-based framework consisting of LeLM and a music codec. LeLM is capable of parallelly modeling two types of tokens: mixed tokens, which represent the combined audio of vocals and accompaniment to achieve vocal-instrument harmony, and dual-track tokens, which separately encode vocals and accompaniment for high-quality song generation. It employs two decoder-only transformers and a modular extension training strategy to prevent interference between different token types. To further enhance musicality and instruction following, we introduce a multi-preference alignment method based on Direct Preference Optimization (DPO). This method handles diverse human preferences through a semi-automatic data construction process and DPO post-training. Experimental results demonstrate that LeVo consistently outperforms existing methods on both objective and subjective metrics. Ablation studies further justify the effectiveness of our designs. Audio examples are available at https://levo-demo.github.io/.
Abstract:We propose TES-VC (Text-driven Environment and Speaker controllable Voice Conversion), a text-driven voice conversion framework with independent control of speaker timbre and environmental acoustics. TES-VC processes simultaneous text inputs for target voice and environment, accurately generating speech matching described timbre/environment while preserving source content. Trained on synthetic data with decoupled vocal/environment features via latent diffusion modeling, our method eliminates interference between attributes. The Retrieval-Based Timbre Control (RBTC) module enables precise manipulation using abstract descriptions without paired data. Experiments confirm TES-VC effectively generates contextually appropriate speech in both timbre and environment with high content retention and superior controllability which demonstrates its potential for widespread applications.
Abstract:As deep learning advances in audio generation, challenges in audio security and copyright protection highlight the need for robust audio watermarking. Recent neural network-based methods have made progress but still face three main issues: preventing unauthorized access, decoding initial watermarks after multiple embeddings, and embedding varying lengths of watermarks. To address these issues, we propose WAKE, the first key-controllable audio watermark framework. WAKE embeds watermarks using specific keys and recovers them with corresponding keys, enhancing security by making incorrect key decoding impossible. It also resolves the overwriting issue by allowing watermark decoding after multiple embeddings and supports variable-length watermark insertion. WAKE outperforms existing models in both watermarked audio quality and watermark detection accuracy. Code, more results, and demo page: https://thuhcsi.github.io/WAKE.
Abstract:Voice cloning (VC)-resistant watermarking is an emerging technique for tracing and preventing unauthorized cloning. Existing methods effectively trace traditional VC models by training them on watermarked audio but fail in zero-shot VC scenarios, where models synthesize audio from an audio prompt without training. To address this, we propose VoiceMark, the first zero-shot VC-resistant watermarking method that leverages speaker-specific latents as the watermark carrier, allowing the watermark to transfer through the zero-shot VC process into the synthesized audio. Additionally, we introduce VC-simulated augmentations and VAD-based loss to enhance robustness against distortions. Experiments on multiple zero-shot VC models demonstrate that VoiceMark achieves over 95% accuracy in watermark detection after zero-shot VC synthesis, significantly outperforming existing methods, which only reach around 50%. See our code and demos at: https://huggingface.co/spaces/haiyunli/VoiceMark
Abstract:Large Language Models (LLMs) have extended their impact beyond Natural Language Processing, substantially fostering the development of interdisciplinary research. Recently, various LLM-based agents have been developed to assist scientific discovery progress across multiple aspects and domains. Among these, computer-using agents, capable of interacting with operating systems as humans do, are paving the way to automated scientific problem-solving and addressing routines in researchers' workflows. Recognizing the transformative potential of these agents, we introduce ScienceBoard, which encompasses two complementary contributions: (i) a realistic, multi-domain environment featuring dynamic and visually rich scientific workflows with integrated professional software, where agents can autonomously interact via different interfaces to accelerate complex research tasks and experiments; and (ii) a challenging benchmark of 169 high-quality, rigorously validated real-world tasks curated by humans, spanning scientific-discovery workflows in domains such as biochemistry, astronomy, and geoinformatics. Extensive evaluations of agents with state-of-the-art backbones (e.g., GPT-4o, Claude 3.7, UI-TARS) show that, despite some promising results, they still fall short of reliably assisting scientists in complex workflows, achieving only a 15% overall success rate. In-depth analysis further provides valuable insights for addressing current agent limitations and more effective design principles, paving the way to build more capable agents for scientific discovery. Our code, environment, and benchmark are at https://qiushisun.github.io/ScienceBoard-Home/.
Abstract:Large language models (LLMs) have shown remarkable generalization across tasks, leading to increased interest in integrating speech with LLMs. These speech LLMs (SLLMs) typically use supervised fine-tuning to align speech with text-based LLMs. However, the lack of annotated speech data across a wide range of tasks hinders alignment efficiency, resulting in poor generalization. To address these issues, we propose a novel multi-task 'behavior imitation' method with speech-text interleaving, called MTBI, which relies solely on paired speech and transcripts. By ensuring the LLM decoder generates equivalent responses to paired speech and text, we achieve a more generalized SLLM. Interleaving is used to further enhance alignment efficiency. We introduce a simple benchmark to evaluate prompt and task generalization across different models. Experimental results demonstrate that our MTBI outperforms SOTA SLLMs on both prompt and task generalization, while requiring less supervised speech data.
Abstract:Modern autoregressive speech synthesis models leveraging language models have demonstrated remarkable performance. However, the sequential nature of next token prediction in these models leads to significant latency, hindering their deployment in scenarios where inference speed is critical. In this work, we propose Speech Speculative Decoding (SSD), a novel framework for autoregressive speech synthesis acceleration. Specifically, our method employs a lightweight draft model to generate candidate token sequences, which are subsequently verified in parallel by the target model using the proposed SSD framework. Experimental results demonstrate that SSD achieves a significant speedup of 1.4x compared with conventional autoregressive decoding, while maintaining high fidelity and naturalness. Subjective evaluations further validate the effectiveness of SSD in preserving the perceptual quality of the target model while accelerating inference.
Abstract:We present Seed1.5-VL, a vision-language foundation model designed to advance general-purpose multimodal understanding and reasoning. Seed1.5-VL is composed with a 532M-parameter vision encoder and a Mixture-of-Experts (MoE) LLM of 20B active parameters. Despite its relatively compact architecture, it delivers strong performance across a wide spectrum of public VLM benchmarks and internal evaluation suites, achieving the state-of-the-art performance on 38 out of 60 public benchmarks. Moreover, in agent-centric tasks such as GUI control and gameplay, Seed1.5-VL outperforms leading multimodal systems, including OpenAI CUA and Claude 3.7. Beyond visual and video understanding, it also demonstrates strong reasoning abilities, making it particularly effective for multimodal reasoning challenges such as visual puzzles. We believe these capabilities will empower broader applications across diverse tasks. In this report, we mainly provide a comprehensive review of our experiences in building Seed1.5-VL across model design, data construction, and training at various stages, hoping that this report can inspire further research. Seed1.5-VL is now accessible at https://www.volcengine.com/ (Volcano Engine Model ID: doubao-1-5-thinking-vision-pro-250428)
Abstract:With the advancement of speech synthesis technology, users have higher expectations for the naturalness and expressiveness of synthesized speech. But previous research ignores the importance of prompt selection. This study proposes a text-to-speech (TTS) framework based on Retrieval-Augmented Generation (RAG) technology, which can dynamically adjust the speech style according to the text content to achieve more natural and vivid communication effects. We have constructed a speech style knowledge database containing high-quality speech samples in various contexts and developed a style matching scheme. This scheme uses embeddings, extracted by Llama, PER-LLM-Embedder,and Moka, to match with samples in the knowledge database, selecting the most appropriate speech style for synthesis. Furthermore, our empirical research validates the effectiveness of the proposed method. Our demo can be viewed at: https://thuhcsi.github.io/icme2025-AutoStyle-TTS
Abstract:Advancing LLM reasoning skills has captivated wide interest. However, current post-training techniques rely heavily on supervisory signals, such as outcome supervision or auxiliary reward models, which face the problem of scalability and high annotation costs. This motivates us to enhance LLM reasoning without the need for external supervision. We introduce a generalizable and purely unsupervised self-training framework, named Genius. Without external auxiliary, Genius requires to seek the optimal response sequence in a stepwise manner and optimize the LLM. To explore the potential steps and exploit the optimal ones, Genius introduces a stepwise foresight re-sampling strategy to sample and estimate the step value by simulating future outcomes. Further, we recognize that the unsupervised setting inevitably induces the intrinsic noise and uncertainty. To provide a robust optimization, we propose an advantage-calibrated optimization (ACO) loss function to mitigate estimation inconsistencies. Combining these techniques together, Genius provides an advanced initial step towards self-improve LLM reasoning with general queries and without supervision, revolutionizing reasoning scaling laws given the vast availability of general queries. The code will be released at https://github.com/xufangzhi/Genius.