Abstract:Controllable speech synthesis aims to control the style of generated speech using reference input, which can be of various modalities. Existing face-based methods struggle with robustness and generalization due to data quality constraints, while text prompt methods offer limited diversity and fine-grained control. Although multimodal approaches aim to integrate various modalities, their reliance on fully matched training data significantly constrains their performance and applicability. This paper proposes a 3-stage multimodal controllable speech synthesis framework to address these challenges. For face encoder, we use supervised learning and knowledge distillation to tackle generalization issues. Furthermore, the text encoder is trained on both text-face and text-speech data to enhance the diversity of the generated speech. Experimental results demonstrate that this method outperforms single-modal baseline methods in both face based and text prompt based speech synthesis, highlighting its effectiveness in generating high-quality speech.
Abstract:This paper describes the zero-shot spontaneous style TTS system for the ISCSLP 2024 Conversational Voice Clone Challenge (CoVoC). We propose a LLaMA-based codec language model with a delay pattern to achieve spontaneous style voice cloning. To improve speech intelligibility, we introduce the Classifier-Free Guidance (CFG) strategy in the language model to strengthen conditional guidance on token prediction. To generate high-quality utterances, we adopt effective data preprocessing operations and fine-tune our model with selected high-quality spontaneous speech data. The official evaluations in the CoVoC constrained track show that our system achieves the best speech naturalness MOS of 3.80 and obtains considerable speech quality and speaker similarity results.