Abstract:We propose TES-VC (Text-driven Environment and Speaker controllable Voice Conversion), a text-driven voice conversion framework with independent control of speaker timbre and environmental acoustics. TES-VC processes simultaneous text inputs for target voice and environment, accurately generating speech matching described timbre/environment while preserving source content. Trained on synthetic data with decoupled vocal/environment features via latent diffusion modeling, our method eliminates interference between attributes. The Retrieval-Based Timbre Control (RBTC) module enables precise manipulation using abstract descriptions without paired data. Experiments confirm TES-VC effectively generates contextually appropriate speech in both timbre and environment with high content retention and superior controllability which demonstrates its potential for widespread applications.