Abstract:Audio-visual target speaker extraction (AV-TSE) models primarily rely on target visual cues to isolate the target speaker's voice from others. We know that humans leverage linguistic knowledge, such as syntax and semantics, to support speech perception. Inspired by this, we explore the potential of pre-trained speech-language models (PSLMs) and pre-trained language models (PLMs) as auxiliary knowledge sources for AV-TSE. In this study, we propose incorporating the linguistic constraints from PSLMs or PLMs for the AV-TSE model as additional supervision signals. Without introducing any extra computational cost during inference, the proposed approach consistently improves speech quality and intelligibility. Furthermore, we evaluate our method in multi-language settings and visual cue-impaired scenarios and show robust performance gains.
Abstract:Early detection is crucial for timely intervention aimed at preventing and slowing the progression of neurocognitive disorder (NCD), a common and significant health problem among the aging population. Recent evidence has suggested that language-related functional magnetic resonance imaging (fMRI) may be a promising approach for detecting cognitive decline and early NCD. In this paper, we proposed a novel, naturalistic language-related fMRI task for this purpose. We examined the effectiveness of this task among 97 non-demented Chinese older adults from Hong Kong. The results showed that machine-learning classification models based on fMRI features extracted from the task and demographics (age, gender, and education year) achieved an average area under the curve of 0.86 when classifying participants' cognitive status (labeled as NORMAL vs DECLINE based on their scores on a standard neurcognitive test). Feature localization revealed that the fMRI features most frequently selected by the data-driven approach came primarily from brain regions associated with language processing, such as the superior temporal gyrus, middle temporal gyrus, and right cerebellum. The study demonstrated the potential of the naturalistic language-related fMRI task for early detection of aging-related cognitive decline and NCD.
Abstract:As deep learning advances in audio generation, challenges in audio security and copyright protection highlight the need for robust audio watermarking. Recent neural network-based methods have made progress but still face three main issues: preventing unauthorized access, decoding initial watermarks after multiple embeddings, and embedding varying lengths of watermarks. To address these issues, we propose WAKE, the first key-controllable audio watermark framework. WAKE embeds watermarks using specific keys and recovers them with corresponding keys, enhancing security by making incorrect key decoding impossible. It also resolves the overwriting issue by allowing watermark decoding after multiple embeddings and supports variable-length watermark insertion. WAKE outperforms existing models in both watermarked audio quality and watermark detection accuracy. Code, more results, and demo page: https://thuhcsi.github.io/WAKE.
Abstract:Robust evaluation is critical for deploying trustworthy retrieval-augmented generation (RAG) systems. However, current LLM-based evaluation frameworks predominantly rely on directly prompting resource-intensive models with complex multi-stage prompts, underutilizing models' reasoning capabilities and introducing significant computational cost. In this paper, we present RAG-Zeval (RAG-Zero Evaluator), a novel end-to-end framework that formulates faithfulness and correctness evaluation as a rule-guided reasoning task. Our approach trains evaluators with reinforcement learning, facilitating compact models to generate comprehensive and sound assessments with detailed explanation in one-pass. We introduce a ranking-based outcome reward mechanism, using preference judgments rather than absolute scores, to address the challenge of obtaining precise pointwise reward signals. To this end, we synthesize the ranking references by generating quality-controlled responses with zero human annotation. Experiments demonstrate RAG-Zeval's superior performance, achieving the strongest correlation with human judgments and outperforming baselines that rely on LLMs with 10-100 times more parameters. Our approach also exhibits superior interpretability in response evaluation.
Abstract:Large language models (LLMs) have shown remarkable generalization across tasks, leading to increased interest in integrating speech with LLMs. These speech LLMs (SLLMs) typically use supervised fine-tuning to align speech with text-based LLMs. However, the lack of annotated speech data across a wide range of tasks hinders alignment efficiency, resulting in poor generalization. To address these issues, we propose a novel multi-task 'behavior imitation' method with speech-text interleaving, called MTBI, which relies solely on paired speech and transcripts. By ensuring the LLM decoder generates equivalent responses to paired speech and text, we achieve a more generalized SLLM. Interleaving is used to further enhance alignment efficiency. We introduce a simple benchmark to evaluate prompt and task generalization across different models. Experimental results demonstrate that our MTBI outperforms SOTA SLLMs on both prompt and task generalization, while requiring less supervised speech data.
Abstract:Audio-Visual Target Speaker Extraction (AV-TSE) aims to mimic the human ability to enhance auditory perception using visual cues. Although numerous models have been proposed recently, most of them estimate target signals by primarily relying on local dependencies within acoustic features, underutilizing the human-like capacity to infer unclear parts of speech through contextual information. This limitation results in not only suboptimal performance but also inconsistent extraction quality across the utterance, with some segments exhibiting poor quality or inadequate suppression of interfering speakers. To close this gap, we propose a model-agnostic strategy called the Mask-And-Recover (MAR). It integrates both inter- and intra-modality contextual correlations to enable global inference within extraction modules. Additionally, to better target challenging parts within each sample, we introduce a Fine-grained Confidence Score (FCS) model to assess extraction quality and guide extraction modules to emphasize improvement on low-quality segments. To validate the effectiveness of our proposed model-agnostic training paradigm, six popular AV-TSE backbones were adopted for evaluation on the VoxCeleb2 dataset, demonstrating consistent performance improvements across various metrics.
Abstract:We propose Universal target audio Separation (UniSep), addressing the separation task on arbitrary mixtures of different types of audio. Distinguished from previous studies, UniSep is performed on unlimited source domains and unlimited source numbers. We formulate the separation task as a sequence-to-sequence problem, and a large language model (LLM) is used to model the audio sequence in the discrete latent space, leveraging the power of LLM in handling complex mixture audios with large-scale data. Moreover, a novel pre-training strategy is proposed to utilize audio-only data, which reduces the efforts of large-scale data simulation and enhances the ability of LLMs to understand the consistency and correlation of information within audio sequences. We also demonstrate the effectiveness of scaling datasets in an audio separation task: we use large-scale data (36.5k hours), including speech, music, and sound, to train a universal target audio separation model that is not limited to a specific domain. Experiments show that UniSep achieves competitive subjective and objective evaluation results compared with single-task models.
Abstract:Improving context faithfulness in large language models is essential for developing trustworthy retrieval augmented generation systems and mitigating hallucinations, especially in long-form question answering (LFQA) tasks or scenarios involving knowledge conflicts. Existing methods either intervene LLMs only at inference without addressing their inherent limitations or overlook the potential for self-improvement. In this paper, we introduce GenDiE (Generate, Discriminate, Evolve), a novel self-evolving framework that enhances context faithfulness through fine-grained sentence-level optimization. GenDiE combines both generative and discriminative training, equipping LLMs with self-generation and self-scoring capabilities to facilitate iterative self-evolution. This supports both data construction for model alignment and score-guided search during inference. Furthermore, by treating each sentence in a response as an independent optimization unit, GenDiE effectively addresses the limitations of previous approaches that optimize at the holistic answer level, which may miss unfaithful details. Experiments on ASQA (in-domain LFQA) and ConFiQA (out-of-domain counterfactual QA) datasets demonstrate that GenDiE surpasses various baselines in both faithfulness and correctness, and exhibits robust performance for domain adaptation.
Abstract:Empathetic dialogue is crucial for natural human-computer interaction, allowing the dialogue system to respond in a more personalized and emotionally aware manner, improving user satisfaction and engagement. The emergence of large language models (LLMs) has revolutionized dialogue generation by harnessing their powerful capabilities and shown its potential in multimodal domains. Many studies have integrated speech with text-based LLMs to take speech question as input and output text response. However, the lack of spoken question-answering datasets that include speech style information to supervised fine-tuning (SFT) limits the performance of these systems. As a result, while these systems excel at understanding speech content, they often struggle to generate empathetic responses. In response, we propose a novel approach that circumvents the need for question-answering data, called Listen, Perceive, and Express (LPE). Our method employs a two-stage training process, initially guiding the LLM to listen the content and perceive the emotional aspects of speech. Subsequently, we utilize Chain-of-Thought (CoT) prompting to unlock the model's potential for expressing empathetic responses based on listened spoken content and perceived emotional cues. We employ experiments to prove the effectiveness of proposed method. To our knowledge, this is the first attempt to leverage CoT for speech-based dialogue.
Abstract:Controlling text-to-speech (TTS) systems to synthesize speech with the prosodic characteristics expected by users has attracted much attention. To achieve controllability, current studies focus on two main directions: (1) using reference speech as prosody prompt to guide speech synthesis, and (2) using natural language descriptions to control the generation process. However, finding reference speech that exactly contains the prosody that users want to synthesize takes a lot of effort. Description-based guidance in TTS systems can only determine the overall prosody, which has difficulty in achieving fine-grained prosody control over the synthesized speech. In this paper, we propose DrawSpeech, a sketch-conditioned diffusion model capable of generating speech based on any prosody sketches drawn by users. Specifically, the prosody sketches are fed to DrawSpeech to provide a rough indication of the expected prosody trends. DrawSpeech then recovers the detailed pitch and energy contours based on the coarse sketches and synthesizes the desired speech. Experimental results show that DrawSpeech can generate speech with a wide variety of prosody and can precisely control the fine-grained prosody in a user-friendly manner. Our implementation and audio samples are publicly available.