Alert button
Picture for Dayiheng Liu

Dayiheng Liu

Alert button

Noisy Pair Corrector for Dense Retrieval

Nov 07, 2023
Hang Zhang, Yeyun Gong, Xingwei He, Dayiheng Liu, Daya Guo, Jiancheng Lv, Jian Guo

Most dense retrieval models contain an implicit assumption: the training query-document pairs are exactly matched. Since it is expensive to annotate the corpus manually, training pairs in real-world applications are usually collected automatically, which inevitably introduces mismatched-pair noise. In this paper, we explore an interesting and challenging problem in dense retrieval, how to train an effective model with mismatched-pair noise. To solve this problem, we propose a novel approach called Noisy Pair Corrector (NPC), which consists of a detection module and a correction module. The detection module estimates noise pairs by calculating the perplexity between annotated positive and easy negative documents. The correction module utilizes an exponential moving average (EMA) model to provide a soft supervised signal, aiding in mitigating the effects of noise. We conduct experiments on text-retrieval benchmarks Natural Question and TriviaQA, code-search benchmarks StaQC and SO-DS. Experimental results show that NPC achieves excellent performance in handling both synthetic and realistic noise.

* Findings of EMNLP 2023 
Viaarxiv icon

EMMA-X: An EM-like Multilingual Pre-training Algorithm for Cross-lingual Representation Learning

Oct 26, 2023
Ping Guo, Xiangpeng Wei, Yue Hu, Baosong Yang, Dayiheng Liu, Fei Huang, Jun Xie

Expressing universal semantics common to all languages is helpful in understanding the meanings of complex and culture-specific sentences. The research theme underlying this scenario focuses on learning universal representations across languages with the usage of massive parallel corpora. However, due to the sparsity and scarcity of parallel data, there is still a big challenge in learning authentic ``universals'' for any two languages. In this paper, we propose EMMA-X: an EM-like Multilingual pre-training Algorithm, to learn (X)Cross-lingual universals with the aid of excessive multilingual non-parallel data. EMMA-X unifies the cross-lingual representation learning task and an extra semantic relation prediction task within an EM framework. Both the extra semantic classifier and the cross-lingual sentence encoder approximate the semantic relation of two sentences, and supervise each other until convergence. To evaluate EMMA-X, we conduct experiments on XRETE, a newly introduced benchmark containing 12 widely studied cross-lingual tasks that fully depend on sentence-level representations. Results reveal that EMMA-X achieves state-of-the-art performance. Further geometric analysis of the built representation space with three requirements demonstrates the superiority of EMMA-X over advanced models.

* Accepted by NeurIPS 2023 
Viaarxiv icon

OccuQuest: Mitigating Occupational Bias for Inclusive Large Language Models

Oct 25, 2023
Mingfeng Xue, Dayiheng Liu, Kexin Yang, Guanting Dong, Wenqiang Lei, Zheng Yuan, Chang Zhou, Jingren Zhou

The emergence of large language models (LLMs) has revolutionized natural language processing tasks. However, existing instruction-tuning datasets suffer from occupational bias: the majority of data relates to only a few occupations, which hampers the instruction-tuned LLMs to generate helpful responses to professional queries from practitioners in specific fields. To mitigate this issue and promote occupation-inclusive LLMs, we create an instruction-tuning dataset named \emph{OccuQuest}, which contains 110,000+ prompt-completion pairs and 30,000+ dialogues covering over 1,000 occupations in 26 occupational categories. We systematically request ChatGPT, organizing queries hierarchically based on Occupation, Responsibility, Topic, and Question, to ensure a comprehensive coverage of occupational specialty inquiries. By comparing with three commonly used datasets (Dolly, ShareGPT, and WizardLM), we observe that OccuQuest exhibits a more balanced distribution across occupations. Furthermore, we assemble three test sets for comprehensive evaluation, an occu-test set covering 25 occupational categories, an estate set focusing on real estate, and an occu-quora set containing real-world questions from Quora. We then fine-tune LLaMA on OccuQuest to obtain OccuLLaMA, which significantly outperforms state-of-the-art LLaMA variants (Vicuna, Tulu, and WizardLM) on professional questions in GPT-4 and human evaluations. Notably, on the occu-quora set, OccuLLaMA reaches a high win rate of 86.4\% against WizardLM.

Viaarxiv icon

How Abilities in Large Language Models are Affected by Supervised Fine-tuning Data Composition

Oct 09, 2023
Guanting Dong, Hongyi Yuan, Keming Lu, Chengpeng Li, Mingfeng Xue, Dayiheng Liu, Wei Wang, Zheng Yuan, Chang Zhou, Jingren Zhou

Figure 1 for How Abilities in Large Language Models are Affected by Supervised Fine-tuning Data Composition
Figure 2 for How Abilities in Large Language Models are Affected by Supervised Fine-tuning Data Composition
Figure 3 for How Abilities in Large Language Models are Affected by Supervised Fine-tuning Data Composition
Figure 4 for How Abilities in Large Language Models are Affected by Supervised Fine-tuning Data Composition

Large language models (LLMs) with enormous pre-training tokens and parameter amounts emerge abilities, including math reasoning, code generation, and instruction following. These abilities are further enhanced by supervised fine-tuning (SFT). The open-source community has studied on ad-hoc SFT for each ability, while proprietary LLMs are versatile for all abilities. It is important to investigate how to unlock them with multiple abilities via SFT. In this study, we specifically focus on the data composition between mathematical reasoning, code generation, and general human-aligning abilities during SFT. From a scaling perspective, we investigate the relationship between model abilities and various factors including data amounts, data composition ratio, model parameters, and SFT strategies. Our experiments reveal that different abilities exhibit different scaling patterns, and larger models generally show superior performance with the same amount of data. Mathematical reasoning and code generation improve as data amounts increase consistently, while the general ability is enhanced with about a thousand samples and improves slowly. We find data composition results in various abilities improvements with low data amounts, while conflicts of abilities with high data amounts. Our experiments further show that composition data amount impacts performance, while the influence of composition ratio is insignificant. Regarding the SFT strategies, we evaluate sequential learning multiple abilities are prone to catastrophic forgetting. Our proposed Dual-stage Mixed Fine-tuning (DMT) strategy learns specialized abilities first and then learns general abilities with a small amount of specialized data to prevent forgetting, offering a promising solution to learn multiple abilities with different scaling patterns.

* 16 pages, 8 figures 
Viaarxiv icon

Qwen Technical Report

Sep 28, 2023
Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, Xiaodong Deng, Yang Fan, Wenbin Ge, Yu Han, Fei Huang, Binyuan Hui, Luo Ji, Mei Li, Junyang Lin, Runji Lin, Dayiheng Liu, Gao Liu, Chengqiang Lu, Keming Lu, Jianxin Ma, Rui Men, Xingzhang Ren, Xuancheng Ren, Chuanqi Tan, Sinan Tan, Jianhong Tu, Peng Wang, Shijie Wang, Wei Wang, Shengguang Wu, Benfeng Xu, Jin Xu, An Yang, Hao Yang, Jian Yang, Shusheng Yang, Yang Yao, Bowen Yu, Hongyi Yuan, Zheng Yuan, Jianwei Zhang, Xingxuan Zhang, Yichang Zhang, Zhenru Zhang, Chang Zhou, Jingren Zhou, Xiaohuan Zhou, Tianhang Zhu

Figure 1 for Qwen Technical Report
Figure 2 for Qwen Technical Report
Figure 3 for Qwen Technical Report
Figure 4 for Qwen Technical Report

Large language models (LLMs) have revolutionized the field of artificial intelligence, enabling natural language processing tasks that were previously thought to be exclusive to humans. In this work, we introduce Qwen, the first installment of our large language model series. Qwen is a comprehensive language model series that encompasses distinct models with varying parameter counts. It includes Qwen, the base pretrained language models, and Qwen-Chat, the chat models finetuned with human alignment techniques. The base language models consistently demonstrate superior performance across a multitude of downstream tasks, and the chat models, particularly those trained using Reinforcement Learning from Human Feedback (RLHF), are highly competitive. The chat models possess advanced tool-use and planning capabilities for creating agent applications, showcasing impressive performance even when compared to bigger models on complex tasks like utilizing a code interpreter. Furthermore, we have developed coding-specialized models, Code-Qwen and Code-Qwen-Chat, as well as mathematics-focused models, Math-Qwen-Chat, which are built upon base language models. These models demonstrate significantly improved performance in comparison with open-source models, and slightly fall behind the proprietary models.

* 59 pages, 5 figures 
Viaarxiv icon

PolyLM: An Open Source Polyglot Large Language Model

Jul 12, 2023
Xiangpeng Wei, Haoran Wei, Huan Lin, Tianhao Li, Pei Zhang, Xingzhang Ren, Mei Li, Yu Wan, Zhiwei Cao, Binbin Xie, Tianxiang Hu, Shangjie Li, Binyuan Hui, Bowen Yu, Dayiheng Liu, Baosong Yang, Fei Huang, Jun Xie

Figure 1 for PolyLM: An Open Source Polyglot Large Language Model
Figure 2 for PolyLM: An Open Source Polyglot Large Language Model
Figure 3 for PolyLM: An Open Source Polyglot Large Language Model
Figure 4 for PolyLM: An Open Source Polyglot Large Language Model

Large language models (LLMs) demonstrate remarkable ability to comprehend, reason, and generate following nature language instructions. However, the development of LLMs has been primarily focused on high-resource languages, such as English, thereby limiting their applicability and research in other languages. Consequently, we present PolyLM, a multilingual LLM trained on 640 billion (B) tokens, avaliable in two model sizes: 1.7B and 13B. To enhance its multilingual capabilities, we 1) integrate bilingual data into training data; and 2) adopt a curriculum learning strategy that increases the proportion of non-English data from 30% in the first stage to 60% in the final stage during pre-training. Further, we propose a multilingual self-instruct method which automatically generates 132.7K diverse multilingual instructions for model fine-tuning. To assess the model's performance, we collect several existing multilingual tasks, including multilingual understanding, question answering, generation, and translation. Extensive experiments show that PolyLM surpasses other open-source models such as LLaMA and BLOOM on multilingual tasks while maintaining comparable performance in English. Our models, alone with the instruction data and multilingual benchmark, are available at: \url{https://modelscope.cn/models/damo/nlp_polylm_13b_text_generation}.

Viaarxiv icon

Bridging the Domain Gaps in Context Representations for k-Nearest Neighbor Neural Machine Translation

May 26, 2023
Zhiwei Cao, Baosong Yang, Huan Lin, Suhang Wu, Xiangpeng Wei, Dayiheng Liu, Jun Xie, Min Zhang, Jinsong Su

Figure 1 for Bridging the Domain Gaps in Context Representations for k-Nearest Neighbor Neural Machine Translation
Figure 2 for Bridging the Domain Gaps in Context Representations for k-Nearest Neighbor Neural Machine Translation
Figure 3 for Bridging the Domain Gaps in Context Representations for k-Nearest Neighbor Neural Machine Translation
Figure 4 for Bridging the Domain Gaps in Context Representations for k-Nearest Neighbor Neural Machine Translation

$k$-Nearest neighbor machine translation ($k$NN-MT) has attracted increasing attention due to its ability to non-parametrically adapt to new translation domains. By using an upstream NMT model to traverse the downstream training corpus, it is equipped with a datastore containing vectorized key-value pairs, which are retrieved during inference to benefit translation. However, there often exists a significant gap between upstream and downstream domains, which hurts the retrieval accuracy and the final translation quality. To deal with this issue, we propose a novel approach to boost the datastore retrieval of $k$NN-MT by reconstructing the original datastore. Concretely, we design a reviser to revise the key representations, making them better fit for the downstream domain. The reviser is trained using the collected semantically-related key-queries pairs, and optimized by two proposed losses: one is the key-queries semantic distance ensuring each revised key representation is semantically related to its corresponding queries, and the other is an L2-norm loss encouraging revised key representations to effectively retain the knowledge learned by the upstream NMT model. Extensive experiments on domain adaptation tasks demonstrate that our method can effectively boost the datastore retrieval and translation quality of $k$NN-MT.\footnote{Our code is available at \url{https://github.com/DeepLearnXMU/RevisedKey-knn-mt}.}

* Accepted to ACL 2023 
Viaarxiv icon

Interactive Natural Language Processing

May 22, 2023
Zekun Wang, Ge Zhang, Kexin Yang, Ning Shi, Wangchunshu Zhou, Shaochun Hao, Guangzheng Xiong, Yizhi Li, Mong Yuan Sim, Xiuying Chen, Qingqing Zhu, Zhenzhu Yang, Adam Nik, Qi Liu, Chenghua Lin, Shi Wang, Ruibo Liu, Wenhu Chen, Ke Xu, Dayiheng Liu, Yike Guo, Jie Fu

Figure 1 for Interactive Natural Language Processing
Figure 2 for Interactive Natural Language Processing
Figure 3 for Interactive Natural Language Processing
Figure 4 for Interactive Natural Language Processing

Interactive Natural Language Processing (iNLP) has emerged as a novel paradigm within the field of NLP, aimed at addressing limitations in existing frameworks while aligning with the ultimate goals of artificial intelligence. This paradigm considers language models as agents capable of observing, acting, and receiving feedback iteratively from external entities. Specifically, language models in this context can: (1) interact with humans for better understanding and addressing user needs, personalizing responses, aligning with human values, and improving the overall user experience; (2) interact with knowledge bases for enriching language representations with factual knowledge, enhancing the contextual relevance of responses, and dynamically leveraging external information to generate more accurate and informed responses; (3) interact with models and tools for effectively decomposing and addressing complex tasks, leveraging specialized expertise for specific subtasks, and fostering the simulation of social behaviors; and (4) interact with environments for learning grounded representations of language, and effectively tackling embodied tasks such as reasoning, planning, and decision-making in response to environmental observations. This paper offers a comprehensive survey of iNLP, starting by proposing a unified definition and framework of the concept. We then provide a systematic classification of iNLP, dissecting its various components, including interactive objects, interaction interfaces, and interaction methods. We proceed to delve into the evaluation methodologies used in the field, explore its diverse applications, scrutinize its ethical and safety issues, and discuss prospective research directions. This survey serves as an entry point for researchers who are interested in this rapidly evolving area and offers a broad view of the current landscape and future trajectory of iNLP.

* 110 pages 
Viaarxiv icon

Towards Fine-Grained Information: Identifying the Type and Location of Translation Errors

Feb 17, 2023
Keqin Bao, Yu Wan, Dayiheng Liu, Baosong Yang, Wenqiang Lei, Xiangnan He, Derek F. Wong, Jun Xie

Figure 1 for Towards Fine-Grained Information: Identifying the Type and Location of Translation Errors
Figure 2 for Towards Fine-Grained Information: Identifying the Type and Location of Translation Errors
Figure 3 for Towards Fine-Grained Information: Identifying the Type and Location of Translation Errors
Figure 4 for Towards Fine-Grained Information: Identifying the Type and Location of Translation Errors

Fine-grained information on translation errors is helpful for the translation evaluation community. Existing approaches can not synchronously consider error position and type, failing to integrate the error information of both. In this paper, we propose Fine-Grained Translation Error Detection (FG-TED) task, aiming at identifying both the position and the type of translation errors on given source-hypothesis sentence pairs. Besides, we build an FG-TED model to predict the \textbf{addition} and \textbf{omission} errors -- two typical translation accuracy errors. First, we use a word-level classification paradigm to form our model and use the shortcut learning reduction to relieve the influence of monolingual features. Besides, we construct synthetic datasets for model training, and relieve the disagreement of data labeling in authoritative datasets, making the experimental benchmark concordant. Experiments show that our model can identify both error type and position concurrently, and gives state-of-the-art results on the restored dataset. Our model also delivers more reliable predictions on low-resource and transfer scenarios than existing baselines. The related datasets and the source code will be released in the future.

Viaarxiv icon

Competency-Aware Neural Machine Translation: Can Machine Translation Know its Own Translation Quality?

Nov 25, 2022
Pei Zhang, Baosong Yang, Haoran Wei, Dayiheng Liu, Kai Fan, Luo Si, Jun Xie

Figure 1 for Competency-Aware Neural Machine Translation: Can Machine Translation Know its Own Translation Quality?
Figure 2 for Competency-Aware Neural Machine Translation: Can Machine Translation Know its Own Translation Quality?
Figure 3 for Competency-Aware Neural Machine Translation: Can Machine Translation Know its Own Translation Quality?
Figure 4 for Competency-Aware Neural Machine Translation: Can Machine Translation Know its Own Translation Quality?

Neural machine translation (NMT) is often criticized for failures that happen without awareness. The lack of competency awareness makes NMT untrustworthy. This is in sharp contrast to human translators who give feedback or conduct further investigations whenever they are in doubt about predictions. To fill this gap, we propose a novel competency-aware NMT by extending conventional NMT with a self-estimator, offering abilities to translate a source sentence and estimate its competency. The self-estimator encodes the information of the decoding procedure and then examines whether it can reconstruct the original semantics of the source sentence. Experimental results on four translation tasks demonstrate that the proposed method not only carries out translation tasks intact but also delivers outstanding performance on quality estimation. Without depending on any reference or annotated data typically required by state-of-the-art metric and quality estimation methods, our model yields an even higher correlation with human quality judgments than a variety of aforementioned methods, such as BLEURT, COMET, and BERTScore. Quantitative and qualitative analyses show better robustness of competency awareness in our model.

* accepted to EMNLP 2022 
Viaarxiv icon