Abstract:Large language models (LLMs) play a crucial role in software engineering, excelling in tasks like code generation and maintenance. However, existing benchmarks are often narrow in scope, focusing on a specific task and lack a comprehensive evaluation framework that reflects real-world applications. To address these gaps, we introduce CoCo-Bench (Comprehensive Code Benchmark), designed to evaluate LLMs across four critical dimensions: code understanding, code generation, code modification, and code review. These dimensions capture essential developer needs, ensuring a more systematic and representative evaluation. CoCo-Bench includes multiple programming languages and varying task difficulties, with rigorous manual review to ensure data quality and accuracy. Empirical results show that CoCo-Bench aligns with existing benchmarks while uncovering significant variations in model performance, effectively highlighting strengths and weaknesses. By offering a holistic and objective evaluation, CoCo-Bench provides valuable insights to guide future research and technological advancements in code-oriented LLMs, establishing a reliable benchmark for the field.
Abstract:Large language models (LLMs) have demonstrated remarkable capabilities, but their success heavily relies on the quality of pretraining corpora. For Chinese LLMs, the scarcity of high-quality Chinese datasets presents a significant challenge, often limiting their performance. To address this issue, we propose the OpenCSG Chinese Corpus, a series of high-quality datasets specifically designed for LLM pretraining, post-training, and fine-tuning. This corpus includes Fineweb-edu-chinese, Fineweb-edu-chinese-v2, Cosmopedia-chinese, and Smoltalk-chinese, each with distinct characteristics: Fineweb-edu datasets focus on filtered, high-quality content derived from diverse Chinese web sources; Cosmopedia-chinese provides synthetic, textbook-style data for knowledge-intensive training; and Smoltalk-chinese emphasizes stylistic and diverse chat-format data. The OpenCSG Chinese Corpus is characterized by its high-quality text, diverse coverage across domains, and scalable, reproducible data curation processes. Additionally, we conducted extensive experimental analyses, including evaluations on smaller parameter models, which demonstrated significant performance improvements in tasks such as C-Eval, showcasing the effectiveness of the corpus for training Chinese LLMs.