Alert button
Picture for Ivan Titov

Ivan Titov

Alert button

Compositional Generalization for Data-to-Text Generation

Dec 05, 2023
Xinnuo Xu, Ivan Titov, Mirella Lapata

Data-to-text generation involves transforming structured data, often represented as predicate-argument tuples, into coherent textual descriptions. Despite recent advances, systems still struggle when confronted with unseen combinations of predicates, producing unfaithful descriptions (e.g. hallucinations or omissions). We refer to this issue as compositional generalisation, and it encouraged us to create a benchmark for assessing the performance of different approaches on this specific problem. Furthermore, we propose a novel model that addresses compositional generalization by clustering predicates into groups. Our model generates text in a sentence-by-sentence manner, relying on one cluster of predicates at a time. This approach significantly outperforms T5~baselines across all evaluation metrics.Notably, it achieved a 31% improvement over T5 in terms of a metric focused on maintaining faithfulness to the input.

* Findings of EMNLP 2023  
Viaarxiv icon

Latent Feature-based Data Splits to Improve Generalisation Evaluation: A Hate Speech Detection Case Study

Nov 16, 2023
Maike Züfle, Verna Dankers, Ivan Titov

With the ever-growing presence of social media platforms comes the increased spread of harmful content and the need for robust hate speech detection systems. Such systems easily overfit to specific targets and keywords, and evaluating them without considering distribution shifts that might occur between train and test data overestimates their benefit. We challenge hate speech models via new train-test splits of existing datasets that rely on the clustering of models' hidden representations. We present two split variants (Subset-Sum-Split and Closest-Split) that, when applied to two datasets using four pretrained models, reveal how models catastrophically fail on blind spots in the latent space. This result generalises when developing a split with one model and evaluating it on another. Our analysis suggests that there is no clear surface-level property of the data split that correlates with the decreased performance, which underscores that task difficulty is not always humanly interpretable. We recommend incorporating latent feature-based splits in model development and release two splits via the GenBench benchmark.

* Accepted at the GenBench workshop at EMNLP 2023; 9 pages in the main paper, 5 pages with references and 4 pages with appendices 
Viaarxiv icon

Memorisation Cartography: Mapping out the Memorisation-Generalisation Continuum in Neural Machine Translation

Nov 09, 2023
Verna Dankers, Ivan Titov, Dieuwke Hupkes

When training a neural network, it will quickly memorise some source-target mappings from your dataset but never learn some others. Yet, memorisation is not easily expressed as a binary feature that is good or bad: individual datapoints lie on a memorisation-generalisation continuum. What determines a datapoint's position on that spectrum, and how does that spectrum influence neural models' performance? We address these two questions for neural machine translation (NMT) models. We use the counterfactual memorisation metric to (1) build a resource that places 5M NMT datapoints on a memorisation-generalisation map, (2) illustrate how the datapoints' surface-level characteristics and a models' per-datum training signals are predictive of memorisation in NMT, (3) and describe the influence that subsets of that map have on NMT systems' performance.

* Published in EMNLP 2023; 21 pages total (9 in the main paper, 3 pages with limitations, acknowledgments and references, 9 pages with appendices) 
Viaarxiv icon

Subspace Chronicles: How Linguistic Information Emerges, Shifts and Interacts during Language Model Training

Oct 25, 2023
Max Müller-Eberstein, Rob van der Goot, Barbara Plank, Ivan Titov

Representational spaces learned via language modeling are fundamental to Natural Language Processing (NLP), however there has been limited understanding regarding how and when during training various types of linguistic information emerge and interact. Leveraging a novel information theoretic probing suite, which enables direct comparisons of not just task performance, but their representational subspaces, we analyze nine tasks covering syntax, semantics and reasoning, across 2M pre-training steps and five seeds. We identify critical learning phases across tasks and time, during which subspaces emerge, share information, and later disentangle to specialize. Across these phases, syntactic knowledge is acquired rapidly after 0.5% of full training. Continued performance improvements primarily stem from the acquisition of open-domain knowledge, while semantics and reasoning tasks benefit from later boosts to long-range contextualization and higher specialization. Measuring cross-task similarity further reveals that linguistically related tasks share information throughout training, and do so more during the critical phase of learning than before or after. Our findings have implications for model interpretability, multi-task learning, and learning from limited data.

* Accepted at EMNLP 2023 (Findings) 
Viaarxiv icon

Cross-Modal Conceptualization in Bottleneck Models

Oct 23, 2023
Danis Alukaev, Semen Kiselev, Ilya Pershin, Bulat Ibragimov, Vladimir Ivanov, Alexey Kornaev, Ivan Titov

Concept Bottleneck Models (CBMs) assume that training examples (e.g., x-ray images) are annotated with high-level concepts (e.g., types of abnormalities), and perform classification by first predicting the concepts, followed by predicting the label relying on these concepts. The main difficulty in using CBMs comes from having to choose concepts that are predictive of the label and then having to label training examples with these concepts. In our approach, we adopt a more moderate assumption and instead use text descriptions (e.g., radiology reports), accompanying the images in training, to guide the induction of concepts. Our cross-modal approach treats concepts as discrete latent variables and promotes concepts that (1) are predictive of the label, and (2) can be predicted reliably from both the image and text. Through experiments conducted on datasets ranging from synthetic datasets (e.g., synthetic images with generated descriptions) to realistic medical imaging datasets, we demonstrate that cross-modal learning encourages the induction of interpretable concepts while also facilitating disentanglement. Our results also suggest that this guidance leads to increased robustness by suppressing the reliance on shortcut features.

Viaarxiv icon

On the Transferability of Visually Grounded PCFGs

Oct 21, 2023
Yanpeng Zhao, Ivan Titov

There has been a significant surge of interest in visually grounded grammar induction in recent times. While a variety of models have been developed for the task and have demonstrated impressive performance, they have not been evaluated on text domains that are different from the training domain, so it is unclear if the improvements brought by visual groundings are transferable. Our study aims to fill this gap and assess the degree of transferability. We start by extending VC-PCFG (short for Visually-grounded Compound PCFG~\citep{zhao-titov-2020-visually}) in such a way that it can transfer across text domains. We consider a zero-shot transfer learning setting where a model is trained on the source domain and is directly applied to target domains, without any further training. Our experimental results suggest that: the benefits from using visual groundings transfer to text in a domain similar to the training domain but fail to transfer to remote domains. Further, we conduct data and result analysis; we find that the lexicon overlap between the source domain and the target domain is the most important factor in the transferability of VC-PCFG.

* Accepted to EMNLP Findings 2023. Our code is available at https://github.com/zhaoyanpeng/cpcfg 
Viaarxiv icon

Cache & Distil: Optimising API Calls to Large Language Models

Oct 20, 2023
Guillem Ramírez, Matthias Lindemann, Alexandra Birch, Ivan Titov

Large-scale deployment of generative AI tools often depends on costly API calls to a Large Language Model (LLM) to fulfil user queries. To curtail the frequency of these calls, one can employ a smaller language model -- a student -- which is continuously trained on the responses of the LLM. This student gradually gains proficiency in independently handling an increasing number of user requests, a process we term neural caching. The crucial element in neural caching is a policy that decides which requests should be processed by the student alone and which should be redirected to the LLM, subsequently aiding the student's learning. In this study, we focus on classification tasks, and we consider a range of classic active learning-based selection criteria as the policy. Our experiments suggest that Margin Sampling and Query by Committee bring consistent benefits across tasks and budgets.

Viaarxiv icon

Injecting a Structural Inductive Bias into a Seq2Seq Model by Simulation

Oct 01, 2023
Matthias Lindemann, Alexander Koller, Ivan Titov

Figure 1 for Injecting a Structural Inductive Bias into a Seq2Seq Model by Simulation
Figure 2 for Injecting a Structural Inductive Bias into a Seq2Seq Model by Simulation
Figure 3 for Injecting a Structural Inductive Bias into a Seq2Seq Model by Simulation
Figure 4 for Injecting a Structural Inductive Bias into a Seq2Seq Model by Simulation

Strong inductive biases enable learning from little data and help generalization outside of the training distribution. Popular neural architectures such as Transformers lack strong structural inductive biases for seq2seq NLP tasks on their own. Consequently, they struggle with systematic generalization beyond the training distribution, e.g. with extrapolating to longer inputs, even when pre-trained on large amounts of text. We show how a structural inductive bias can be injected into a seq2seq model by pre-training it to simulate structural transformations on synthetic data. Specifically, we inject an inductive bias towards Finite State Transducers (FSTs) into a Transformer by pre-training it to simulate FSTs given their descriptions. Our experiments show that our method imparts the desired inductive bias, resulting in improved systematic generalization and better few-shot learning for FST-like tasks.

Viaarxiv icon

Autoencoding Conditional Neural Processes for Representation Learning

May 29, 2023
Victor Prokhorov, Ivan Titov, N. Siddharth

Figure 1 for Autoencoding Conditional Neural Processes for Representation Learning
Figure 2 for Autoencoding Conditional Neural Processes for Representation Learning
Figure 3 for Autoencoding Conditional Neural Processes for Representation Learning
Figure 4 for Autoencoding Conditional Neural Processes for Representation Learning

Conditional neural processes (CNPs) are a flexible and efficient family of models that learn to learn a stochastic process from observations. In the visual domain, they have seen particular application in contextual image completion - observing pixel values at some locations to predict a distribution over values at other unobserved locations. However, the choice of pixels in learning such a CNP is typically either random or derived from a simple statistical measure (e.g. pixel variance). Here, we turn the problem on its head and ask: which pixels would a CNP like to observe? That is, which pixels allow fitting CNP, and do such pixels tell us something about the underlying image? Viewing the context provided to the CNP as fixed-size latent representations, we construct an amortised variational framework, Partial Pixel Space Variational Autoencoder (PPS-VAE), for predicting this context simultaneously with learning a CNP. We evaluate PPS-VAE on a set of vision datasets, and find that not only is it possible to learn context points while also fitting CNPs, but that their spatial arrangement and values provides strong signal for the information contained in the image - evaluated through the lens of classification. We believe the PPS-VAE provides a promising avenue to explore learning interpretable and effective visual representations.

Viaarxiv icon

Theoretical and Practical Perspectives on what Influence Functions Do

May 26, 2023
Andrea Schioppa, Katja Filippova, Ivan Titov, Polina Zablotskaia

Figure 1 for Theoretical and Practical Perspectives on what Influence Functions Do
Figure 2 for Theoretical and Practical Perspectives on what Influence Functions Do
Figure 3 for Theoretical and Practical Perspectives on what Influence Functions Do
Figure 4 for Theoretical and Practical Perspectives on what Influence Functions Do

Influence functions (IF) have been seen as a technique for explaining model predictions through the lens of the training data. Their utility is assumed to be in identifying training examples "responsible" for a prediction so that, for example, correcting a prediction is possible by intervening on those examples (removing or editing them) and retraining the model. However, recent empirical studies have shown that the existing methods of estimating IF predict the leave-one-out-and-retrain effect poorly. In order to understand the mismatch between the theoretical promise and the practical results, we analyse five assumptions made by IF methods which are problematic for modern-scale deep neural networks and which concern convexity, numeric stability, training trajectory and parameter divergence. This allows us to clarify what can be expected theoretically from IF. We show that while most assumptions can be addressed successfully, the parameter divergence poses a clear limitation on the predictive power of IF: influence fades over training time even with deterministic training. We illustrate this theoretical result with BERT and ResNet models. Another conclusion from the theoretical analysis is that IF are still useful for model debugging and correcting even though some of the assumptions made in prior work do not hold: using natural language processing and computer vision tasks, we verify that mis-predictions can be successfully corrected by taking only a few fine-tuning steps on influential examples.

Viaarxiv icon