



Abstract:Recent research has explored using very large language models (LLMs) as proxies for humans in tasks such as simulation, surveys, and studies. While LLMs do not possess a human psychology, they often can emulate human behaviors with sufficiently high fidelity to drive simulations to test human behavioral hypotheses, exhibiting more nuance and range than the rule-based agents often employed in behavioral economics. One key area of interest is the effect of personality on decision making, but the requirement that a prompt must be created for every tested personality profile introduces experimental overhead and degrades replicability. To address this issue, we leverage interpolative decoding, representing each dimension of personality as a pair of opposed prompts and employing an interpolation parameter to simulate behavior along the dimension. We show that interpolative decoding reliably modulates scores along each of the Big Five dimensions. We then show how interpolative decoding causes LLMs to mimic human decision-making behavior in economic games, replicating results from human psychological research. Finally, we present preliminary results of our efforts to ``twin'' individual human players in a collaborative game through systematic search for points in interpolation space that cause the system to replicate actions taken by the human subject.
Abstract:Generative retrieval (GR) re-frames document retrieval as a sequence-based document identifier (DocID) generation task, memorizing documents with model parameters and enabling end-to-end retrieval without explicit indexing. Existing GR methods are based on auto-regressive generative models, i.e., the token generation is performed from left to right. However, such auto-regressive methods suffer from: (1) mismatch between DocID generation and natural language generation, e.g., an incorrect DocID token generated in early left steps would lead to totally erroneous retrieval; and (2) failure to balance the trade-off between retrieval efficiency and accuracy dynamically, which is crucial for practical applications. To address these limitations, we propose generative document retrieval with diffusion language models, dubbed DiffuGR. It models DocID generation as a discrete diffusion process: during training, DocIDs are corrupted through a stochastic masking process, and a diffusion language model is learned to recover them under a retrieval-aware objective. For inference, DiffuGR attempts to generate DocID tokens in parallel and refines them through a controllable number of denoising steps. In contrast to conventional left-to-right auto-regressive decoding, DiffuGR provides a novel mechanism to first generate more confident DocID tokens and refine the generation through diffusion-based denoising. Moreover, DiffuGR also offers explicit runtime control over the qualitylatency tradeoff. Extensive experiments on benchmark retrieval datasets show that DiffuGR is competitive with strong auto-regressive generative retrievers, while offering flexible speed and accuracy tradeoffs through variable denoising budgets. Overall, our results indicate that non-autoregressive diffusion models are a practical and effective alternative for generative document retrieval.




Abstract:This study addresses key challenges in developing domain-specific large language models (LLMs) for Chinese state-owned assets and enterprises (SOAEs), where current approaches face three limitations: 1) constrained model capacity that limits knowledge integration and cross-task adaptability; 2) excessive reliance on domain-specific supervised fine-tuning (SFT) data, which neglects the broader applicability of general language patterns; and 3) inefficient inference acceleration for large models processing long contexts. In this work, we propose SOAEsV2-7B/72B, a specialized LLM series developed via a three-phase framework: 1) continual pre-training integrates domain knowledge while retaining base capabilities; 2) domain-progressive SFT employs curriculum-based learning strategy, transitioning from weakly relevant conversational data to expert-annotated SOAEs datasets to optimize domain-specific tasks; 3) distillation-enhanced speculative decoding accelerates inference via logit distillation between 72B target and 7B draft models, achieving 1.39-1.52$\times$ speedup without quality loss. Experimental results demonstrate that our domain-specific pre-training phase maintains 99.8% of original general language capabilities while significantly improving domain performance, resulting in a 1.08$\times$ improvement in Rouge-1 score and a 1.17$\times$ enhancement in BLEU-4 score. Ablation studies further show that domain-progressive SFT outperforms single-stage training, achieving 1.02$\times$ improvement in Rouge-1 and 1.06$\times$ in BLEU-4. Our work introduces a comprehensive, full-pipeline approach for optimizing SOAEs LLMs, bridging the gap between general language capabilities and domain-specific expertise.
Abstract:Large language models (LLMs) play a crucial role in software engineering, excelling in tasks like code generation and maintenance. However, existing benchmarks are often narrow in scope, focusing on a specific task and lack a comprehensive evaluation framework that reflects real-world applications. To address these gaps, we introduce CoCo-Bench (Comprehensive Code Benchmark), designed to evaluate LLMs across four critical dimensions: code understanding, code generation, code modification, and code review. These dimensions capture essential developer needs, ensuring a more systematic and representative evaluation. CoCo-Bench includes multiple programming languages and varying task difficulties, with rigorous manual review to ensure data quality and accuracy. Empirical results show that CoCo-Bench aligns with existing benchmarks while uncovering significant variations in model performance, effectively highlighting strengths and weaknesses. By offering a holistic and objective evaluation, CoCo-Bench provides valuable insights to guide future research and technological advancements in code-oriented LLMs, establishing a reliable benchmark for the field.
Abstract:We propose GeoUni, the first unified geometry expert model capable of generating problem solutions and diagrams within a single framework in a way that enables the creation of unique and individualized geometry problems. Traditionally, solving geometry problems and generating diagrams have been treated as separate tasks in machine learning, with no models successfully integrating both to support problem creation. However, we believe that mastery in geometry requires frictionless integration of all of these skills, from solving problems to visualizing geometric relationships, and finally, crafting tailored problems. Our extensive experiments demonstrate that GeoUni, with only 1.5B parameters, achieves performance comparable to larger models such as DeepSeek-R1 with 671B parameters in geometric reasoning tasks. GeoUni also excels in generating precise geometric diagrams, surpassing both text-to-image models and unified models, including the GPT-4o image generation. Most importantly, GeoUni is the only model capable of successfully generating textual problems with matching diagrams based on specific knowledge points, thus offering a wider range of capabilities that extend beyond current models.
Abstract:Large language models (LLMs) have demonstrated remarkable capabilities, but their success heavily relies on the quality of pretraining corpora. For Chinese LLMs, the scarcity of high-quality Chinese datasets presents a significant challenge, often limiting their performance. To address this issue, we propose the OpenCSG Chinese Corpus, a series of high-quality datasets specifically designed for LLM pretraining, post-training, and fine-tuning. This corpus includes Fineweb-edu-chinese, Fineweb-edu-chinese-v2, Cosmopedia-chinese, and Smoltalk-chinese, each with distinct characteristics: Fineweb-edu datasets focus on filtered, high-quality content derived from diverse Chinese web sources; Cosmopedia-chinese provides synthetic, textbook-style data for knowledge-intensive training; and Smoltalk-chinese emphasizes stylistic and diverse chat-format data. The OpenCSG Chinese Corpus is characterized by its high-quality text, diverse coverage across domains, and scalable, reproducible data curation processes. Additionally, we conducted extensive experimental analyses, including evaluations on smaller parameter models, which demonstrated significant performance improvements in tasks such as C-Eval, showcasing the effectiveness of the corpus for training Chinese LLMs.




Abstract:Traffic data imputation is a critical preprocessing step in intelligent transportation systems, enabling advanced transportation services. Despite significant advancements in this field, selecting the most suitable model for practical applications remains challenging due to three key issues: 1) incomprehensive consideration of missing patterns that describe how data loss along spatial and temporal dimensions, 2) the lack of test on standardized datasets, and 3) insufficient evaluations. To this end, we first propose practice-oriented taxonomies for missing patterns and imputation models, systematically identifying all possible forms of real-world traffic data loss and analyzing the characteristics of existing models. Furthermore, we introduce a unified benchmarking pipeline to comprehensively evaluate 10 representative models across various missing patterns and rates. This work aims to provide a holistic understanding of traffic data imputation research and serve as a practical guideline.




Abstract:Seismic fault detection holds significant geographical and practical application value, aiding experts in subsurface structure interpretation and resource exploration. Despite some progress made by automated methods based on deep learning, research in the seismic domain faces significant challenges, particularly because it is difficult to obtain high-quality, large-scale, open-source, and diverse datasets, which hinders the development of general foundation models. Therefore, this paper proposes Seismic Fault SAM, which, for the first time, applies the general pre-training foundation model-Segment Anything Model (SAM)-to seismic fault interpretation. This method aligns the universal knowledge learned from a vast amount of images with the seismic domain tasks through an Adapter design. Specifically, our innovative points include designing lightweight Adapter modules, freezing most of the pre-training weights, and only updating a small number of parameters to allow the model to converge quickly and effectively learn fault features; combining 2.5D input strategy to capture 3D spatial patterns with 2D models; integrating geological constraints into the model through prior-based data augmentation techniques to enhance the model's generalization capability. Experimental results on the largest publicly available seismic dataset, Thebe, show that our method surpasses existing 3D models on both OIS and ODS metrics, achieving state-of-the-art performance and providing an effective extension scheme for other seismic domain downstream tasks that lack labeled data.




Abstract:In traditional human living environment landscape design, the establishment of three-dimensional models is an essential step for designers to intuitively present the spatial relationships of design elements, as well as a foundation for conducting landscape analysis on the site. Rapidly and effectively generating beautiful and realistic landscape spaces is a significant challenge faced by designers. Although generative design has been widely applied in related fields, they mostly generate three-dimensional models through the restriction of indicator parameters. However, the elements of landscape design are complex and have unique requirements, making it difficult to generate designs from the perspective of indicator limitations. To address these issues, this study proposes a park space generative design system based on deep learning technology. This system generates design plans based on the topological relationships of landscape elements, then vectorizes the plan element information, and uses Grasshopper to generate three-dimensional models while synchronously fine-tuning parameters, rapidly completing the entire process from basic site conditions to model effect analysis. Experimental results show that: (1) the system, with the aid of AI-assisted technology, can rapidly generate space green space schemes that meet the designer's perspective based on site conditions; (2) this study has vectorized and three-dimensionalized various types of landscape design elements based on semantic information; (3) the analysis and visualization module constructed in this study can perform landscape analysis on the generated three-dimensional models and produce node effect diagrams, allowing users to modify the design in real time based on the effects, thus enhancing the system's interactivity.
Abstract:This study aims to explore the complex relationship between perceptual and cognitive interactions in multimodal data analysis,with a specific emphasis on spatial experience design in overseas Chinese gardens. It is found that evaluation content and images on social media can reflect individuals' concerns and sentiment responses, providing a rich data base for cognitive research that contains both sentimental and image-based cognitive information. Leveraging deep learning techniques, we analyze textual and visual data from social media, thereby unveiling the relationship between people's perceptions and sentiment cognition within the context of overseas Chinese gardens. In addition, our study introduces a multi-agent system (MAS)alongside AI agents. Each agent explores the laws of aesthetic cognition through chat scene simulation combined with web search. This study goes beyond the traditional approach of translating perceptions into sentiment scores, allowing for an extension of the research methodology in terms of directly analyzing texts and digging deeper into opinion data. This study provides new perspectives for understanding aesthetic experience and its impact on architecture and landscape design across diverse cultural contexts, which is an essential contribution to the field of cultural communication and aesthetic understanding.